

Product Manual 35018V3 (Revision -, 3/2020) Original Instructions

505XT Digital Control for Steam Turbines (Single Valve, Extraction and/or Admission)

Manual 35018 consists of 3 volumes (35018V1, 35018V2 & 35018V3)

505XT Dual Redundant Volume 3

General

Revisions

505XT Digital Control System for Steam Turbines

Read this entire manual and all other publications pertaining to the work to be performed before installing, operating, or servicing this equipment.

Practice all plant and safety instructions and precautions.

Precautions Failure to follow instructions can cause personal injury and/or property damage.

This publication may have been revised or updated since this copy was produced. To verify that you have the latest revision, check manual 26455, Customer Publication Cross Reference and Revision Status & Distribution Restrictions, on the publications page of the Woodward website: www.woodward.com/publications

The latest version of most publications is available on the *publications page*. If your publication is not there, please contact your customer service representative to get the latest copy.

Any unauthorized modifications to or use of this equipment outside its specified mechanical, electrical, or other operating limits may cause personal injury and/or property damage, including damage to the equipment. Any such unauthorized modifications: (i) constitute "misuse" and/or "negligence" within the meaning of the product warranty thereby excluding warranty coverage for any resulting damage, and (ii) invalidate product certifications or listings.

If the cover of this publication states "Translation of the Original Instructions" please note:

Translated Translated Publication was made. Be sure to check manual 26455, Customer Publication Cross Reference and Revision Status & Distribution Restrictions, to verify whether this translation is up to date. Out-of-date translations are marked with ▲. Always compare with the original for technical specifications and for proper and safe installation and operation procedures.

Revisions— A bold, black line alongside the text identifies changes in this publication since the last revision.

Woodward reserves the right to update any portion of this publication at any time. Information provided by Woodward is believed to be correct and reliable. However, no responsibility is assumed by Woodward unless otherwise expressly undertaken.

Manual 35018V1 Copyright © Woodward, Inc. 2020 All Rights Reserved

Contents

WARNINGS AND NOTICES	6
ELECTROSTATIC DISCHARGE AWARENESS	7
CHAPTER 15. GENERAL INFORMATION Feature Differences between the 505DR and previous 505/505XT	-
CHAPTER 16. REDUNDANT SETUP AND CONFIGURATION	11 12 16 26 38 39 60
CHAPTER 17. REDUNDANT OPERATION Initializing a Redundant System. System Diagnostics. The SYSCON Unit The BACKUP Unit. Operational Commands and Settings. Online Unit Repairs . RemoteView Connections. Failover Performance. Alarms Trips . Modbus Addressing	62 64 67 70 78 78 79 82 84 84 85 94
REVISION HISTORY	114

The following are trademarks of Woodward, Inc.: ProTech Woodward

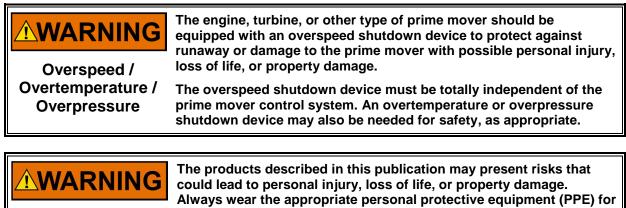
The following are trademarks of their respective companies: Modbus (Schneider Automation Inc.) Pentium (Intel Corporation)

Illustrations and Tables

Figure 15-1. Typical Redundant 505XT Application Configuration	9
Figure 16-1. 505DR with FTM	
Figure 16-2. Single Coil Shared Driver	
Figure 16-3 Single Coil Shared Driver with 505DR FTM	. 17
Figure 16-4 Dual Coil Driver	
Figure 16-5. Dual Coil Driver with 505DR FTM	
Figure 16-6. Redundant (Parallel) Actuator Driver	. 19
Figure 16-7. Redundant (Parallel) Actuator Driver with 505DR FTM	
Figure 16-8. Actuator Driver with Redundant Demands	
Figure 16-9. Actuator Type Configuration	
Figure 16-10. Driver Channel Configuration	
Figure 16-11. mA Backup Channel Configuration	25
Figure 16-12. Driver Configuration Page Buttons	
Figure 16-13. Servo Position Controller	
Figure 16-14. SPC Driver CAN Links	
Figure 16-15a. SPC Driver Configuration for Redundant Actuators	
Figure 16-15b. SPC Driver Configuration for Redundant Actuators	
Figure 16-15c. SPC Driver Configuration for Redundant Actuators	
Figure 16-15d. SPC Driver Configuration for Redundant Actuators	
Figure 16-15e. SPC Driver Configuration for Redundant Actuators	
Figure 16-15f. SPC Driver Configuration for Redundant Actuators	
Figure 16-15g. SPC Driver Configuration for Redundant Actuators	
Figure 16-16a. SPC Driver Configuration for Dual Coil Actuators	
Figure 16-16b. SPC Driver Configuration for Dual Coil Actuators	
Figure 16-17. Expandable I/O Node 26 Driver (bumpless SYSCON transfer)	
Figure 16-18. Single Network Modbus Architecture	
Figure 16-19. Redundant Network Modbus Architecture	30
Figure 17-1. Wait Run Permissive Screen	63
Figure 17-2. Navigating to the DR Overview Screen	
Figure 17-3. System Diagnostics Screen	
Figure 17-4. Primary/Secondary SYSCON/BACKUP Indications	
Figure 17-5. Front Panel CPU LED SYCON/BACKUP Indication	
Figure 17-5. From Faller CFO LED STCON/BACKOF Indication	
Figure 17-6. ST SCON //O Monitoring Pages	
Figure 17-7. BACKUP Unit Inhibited Screen	
Figure 17-8. BACKUP Unit minibiled Screen	
Figure 17-9. BACKUP Analog Inputs Screen	
Figure 17-10 BACKUP Speed Inputs Screen	
Figure 17-11. BACKUP Speed inputs Screen	
Figure 17-12. BACKUP Actuator Outputs Screen	
Figure 17-13. BACKUP Actuator Outputs Screen	
Figure 17-14. BACKUP Boolean inputs Screen	
Figure 17-16. User SYSCON Transfer Command	
Figure 17-17. User Unsync Backup Command	
Figure 17-18. User Reset Backup Command	
Figure 17-19. System Diagnostic Faults Cleared	
Figure 17-20. BACKUP Available	
Figure 17-21. Session connections dialog box	
Figure 17-22. Actuator Output Failover Performance	
Figure 17-23. RTCNet Node 26 Analog Output Performance	
Figure 17-24. SPC Analog Output Performance	00

505XT Dual Redundant Control System for Steam Turbines

Table 16-1. Field Termination Module Kit Bill of Materials	
Table 16-2. Analog Input Fault Table	. 13
Table 16-3. Single Speed Signal Fault Table	
Table 16-4. 2 Speed Signal Fault Table	. 13
Table 16-5. Analog Output Fault Table	
Table 16-6. Driver Single Coil Fault Table	. 15
Table 16-7. Driver Dual Coil or Redundant Fault Table	
Table 16-8. Woodward Redundant Actuators	. 19
Table 16-9. Boolean Input Configuration Options	. 20
Table 16-10. Driver Fault Current Table	. 21
Table 16-11. Available (programmed) SPC Drivers	. 27
Table 16-12. Expandable I/O RTCNet Node Part Numbers	
Table 16-13. Analog Input Function List	. 42
Table 16-14. Analog Output (Readout) Function List	
Table 16-15. Boolean Input Function List	. 45
Table 16-16. Relay Output Indication Function List	
Table 16-17. Relay Output Level Switch Function List	
Table 16-18. Actuator Driver Function List	
Table 16-19. Configuration Error Messages	
Table 17-1. System Diagnostic Descriptions	
Table 17-2. Primary/Secondary SYSCON/BACKUP Status Descriptions	
Table 17-3. Front Panel CPU LED SYCON/BACKUP Descriptions	. 68
Table 17-4. Alarm Messages	
Table 17-5. Distributed I/O Alarm Messages	. 91
Table 17-6. Trip Messages	
Table 17-7. Distributed I/O Trip Messages	
Table 17-8. Boolean Write Addresses	
Table 17-9. Boolean Read Addresses	
Table 17-10. Analog Read Addresses 1	
Table 17-11. Analog Write Addresses 1	113


Warnings and Notices

Important Definitions

This is the safety alert symbol used to alert you to potential personal injury hazards. Obey all safety messages that follow this symbol to avoid possible injury or death.

- **DANGER** Indicates a hazardous situation, which if not avoided, will result in death or serious injury.
- WARNING Indicates a hazardous situation, which if not avoided, could result in death or serious injury.
- CAUTION Indicates a hazardous situation, which if not avoided, could result in minor or moderate injury.
- **NOTICE** Indicates a hazard that could result in property damage only (including damage to the control).
- **IMPORTANT** Designates an operating tip or maintenance suggestion.

Personal Protective Equipment

- the job at hand. Equipment that should be considered includes but is not limited to:
- **Eye Protection**
- **Hearing Protection**
- Hard Hat
- Gloves
- Safety Boots
- Respirator

Always read the proper Material Safety Data Sheet (MSDS) for any working fluid(s) and comply with recommended safety equipment.

Be prepared to make an emergency shutdown when starting the engine, turbine, or other type of prime mover, to protect against runaway or overspeed with possible personal injury, loss of life, or property damage.

Electrostatic Discharge Awareness

NOTICE Electrostatic Precautions	 Electronic controls contain static-sensitive parts. Observe the following precautions to prevent damage to these parts: Discharge body static before handling the control (with power to the control turned off, contact a grounded surface and maintain contact while handling the control). Avoid all plastic, vinyl, and Styrofoam (except antistatic versions) around printed circuit boards. Do not touch the components or conductors on a printed circuit board with your hands or with conductive devices. To prevent damage to electronic components caused by improper handling, read and observe the precautions in Woodward manual
	82715 , Guide for Handling and Protection of Electronic Controls, Printed Circuit Boards, and Modules.

Follow these precautions when working with or near the control.

- 1. Avoid the build-up of static electricity on your body by not wearing clothing made of synthetic materials. Wear cotton or cotton-blend materials as much as possible because these do not store static electric charges as much as synthetics.
- 2. Do not remove the printed circuit board (PCB) from the control cabinet unless absolutely necessary. If you must remove the PCB from the control cabinet, follow these precautions:
 - Do not touch any part of the PCB except the edges.
 - Do not touch the electrical conductors, the connectors, or the components with conductive devices or with your hands.
 - When replacing a PCB, keep the new PCB in the plastic antistatic protective bag it comes in until you are ready to install it. Immediately after removing the old PCB from the control cabinet, place it in the antistatic protective bag.

Chapter 15. General Information

Two 505XT controllers can be applied together and configured to function in a redundant manner to increase overall system reliability and availability. In such applications, one 505XT functions as the SYSCON (In-Control) unit and controls all aspects of the turbine system. The second 505XT functions as a BACKUP unit and tracks the SYSCON 505XT's operating parameters to ensure a smooth transfer if the SYSCON 505XT fails.

In a redundant configuration, all 505XT functionality is available so that redundant operation is available for all steam turbines, including:

- Single Valve or split-range actuators turbines
- Controlled Extraction or Admission turbines (2 Control valves)
- Controlled Extraction and Admission turbines (2 Control valves)

The 505XT uses the term Primary to describe the unit with DIP Switch position 0001 and the term Secondary to describe the unit with DIP Switch position 0002 (please refer to Appendix A in the Flex500 hardware manual 26838 for DIP switch configuration instructions). The Primary and Secondary unit designations allow the system to identify each unit specifically. The term SYSCON is used to describe the unit that is currently in-control of the system and the term BACKUP to describe the tracking unit. Either of the Primary or Secondary units can become the SYSCON unit, but in a healthy system, the Primary unit will always boot up as the SYSCON.

The 505XT operating system continuously keeps the BACKUP unit in-sync with the current control state of the SYSCON. On a control transfer, the BACKUP unit becomes the new SYSCON in the exact same state as the previous unit just prior to the transfer. The previous SYSCON will then become the BACKUP unit and begin tracking the SYSCON in the same way. Once the transfer occurs, the new SYSCON begins controlling the system processing its local IO. The system is designed to have identical IO signals between both the Primary and Secondary units such that either unit can become SYSCON with no change in the system control state. In the case of an IO signal discrepancy between the SYSCON and BACKUP units, an alarm is annunciated.

If the system transfers control and an IO signal is not available, the new SYSCON unit will process the signal failure of that function as described in Volume 1 of this manual. For example, if the AUX Input is healthy on the SYSCON but failed on the BACKUP and the SYSCON fails, the control will transfer the SYSCON and the AUX controller will be disabled.

Transfer of control is initiated under the following conditions:

- SYSCON 505XT failure (CPU or internal problem, OS)
- Loss of power to the SYSCON 505XT
- Loss of all speed probes to the SYSCON 505XT
- SYSCON 505XT actuator driver (ACT or AO) output failure detected
- CAN communication fault
- A user "Transfer" command

The 505XT operating system also manages operational commands (Local Panel Commands, RemoteView Commands, or DCS Modbus Commands) and ensures that all operational commands are given to the SYSCON when performed on either unit. This allows the turbine to be operated from either the SYSCON or BACKUP unit. In this way, the BACKUP unit also serves as a redundant interface to operate the turbine. The BACKUP unit will always display the same control states and variables as the SYSCON. All IO as seen from the BACKUP unit on the IO channel pages and operation pages are the signals being processed by the SYSCON. When the SYSCON is transferred, the signals displayed switch to the other unit, as it is now in control of the system. The signals into the BACKUP unit can be monitored from the DR Overview GUI pages.

Manual 35018V3

505XT Dual Redundant Control System for Steam Turbines

Unlike commands over communication paths (Local Panel, RemoteView, or DCS Modbus Commands), only the SYSCON processes hardwired Discrete Input signals. Therefore, the system is designed to have Discrete Input signals wired to each 505XT controller so that a command or system signal is seen by both 505XT units simultaneously.

The 505DR Field Termination Module (FTM) provides a convenient method for wiring IO signals and the discrete interconnect signals between the two 505XT units. Please refer to Appendix A in the Flex500 hardware manual 26838 for details on the 505DR FTM and IO signal wiring.

When configured for redundant applications the 505XT can be configured to drive single coil actuators, dual coil actuators, or parallel actuators (Woodward redundant VariStroke I or CPCII skid). See the redundant control configuration section of this manual to understand all redundant application options.

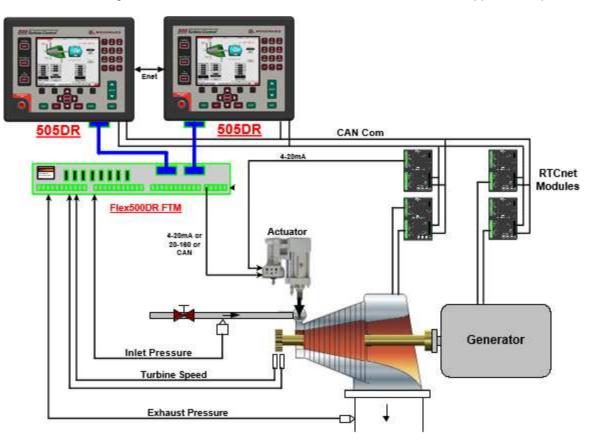


Figure 15-1. Typical Redundant 505XT Application Configuration

Manual 35018V3

Part Number Options

In order to be used as a redundant system, the 505XT must be purchased as a redundant controller using the part numbers below.

IMPORTANT The simplex 505 and 505XT part numbers listed in Volume 1 of this manual cannot be applied in a redundant application. The 505DR part numbers below must be purchased for redundant applications.

Part Number Power

8200-1330505DR (LVDC 18–36 Vdc Standard Compliance) STEAM TURBINE CONTROL8200-1331505DR (AC/DC 88–264 Vac or 90–150 Vdc Standard Compliance) STEAM TURBINE
CONTROL

5541-705 FTM AND CABLES, FLEX500 REDUNDANT

Terminology

	•
505	Refers to the overall Woodward Product family / hardware platform
505XT	Refers specifically to the Control/GUI application software features described in this
	manual – identified on unit p/n label and logo on Home screen
505DR	Refers to a Dual Redundant application of the 505XT.
FTM	Refers to the Field Termination Module (FTM) kit that prewires the field IO and
	interconnect signals
CrissCross	Refers to the Relay #8 to DI #20 discrete health interconnection between the Primary and
	Secondary units.

Feature Differences between the 505DR and previous 505/505XT

The 505DR supports all of the same turbine types and primary control functions of the previous 505 and 505XT simplex models. There are, however, some feature differences to note. The items added were improvements and features that are likely options for redundant systems. A few minor items were eliminated due to low utilizations and pending product changes that could affect the need for this to be a Woodward digital link.

New Features added -

- Enhanced Actuator support dual coil and redundant actuators on both HP and LP valves and allows configuration of these outputs on 8 AO channels and 4 digital drivers (SPC's)
- Support of SPC Digital Drivers (4) to provide simplex or redundant drives to a wider variety of actuator/valve assemblies including integrating valves.
- Support of LinkNet RTC nodes (previous 505XT model supported using LinkNet HT nodes) which allows control process variables and driver outputs to be connected via a real time distributed I/O network
- Added support for redundancy of critical input signals 7 analog inputs now support duplexed inputs
 Remote Speed, Load, Cascade, Auxiliary, Inlet, Extraction, and Exhaust

Features not supported in initial release -

- CAN interface to the VariStroke-II (expected to be added at a future software release)
- CAN interface to the MFR300 product, a power management multi-function protection relay
- Modbus interface to the HighProtec generator protection device

Chapter 16. Redundant Setup and Configuration

Hardware Setup

Detailed hardware setup information is covered in the Flex500 Manual 26838 Appendix A.

The following is a bullet list of the hardware configuration and control interlocks required to operate the 505DR controllers in a redundant mode.

- Must use the correct 505DR part numbers identified in Chapter 1 of this manual, 35018V3.
- Must set DIP switches on top of controller to configure one as the Primary unit
- Must set DIP switches on top of controller to configure the other one as the Secondary unit
- Must use a CAT5 or 6 Ethernet cable and make a direct connection between ETHERNET port 4 of each controller
- Must wire DI 24vdc power of each controller to the COM terminal of Relay #8 of the other controller and wire the NO terminal of Relay #8 back to DI #20

Woodward Flex500 DR FTM Kit (5541-705)

The FTM Kit includes the following parts:

Table 16-1. Field Termination Module Kit Bill of Materials

Part Number	Description
5541-705	FTM AND CABLES KIT, FLEX500/505/VERTEX REDUNDANT
5404-1484 (2x)	HARNESS KIT, FTM, FLEX500/505/VERTEX REDUNDANT
5501-503	FTM MODULE, FLEX500/505/VERTEX REDUNDANT
KP-50001	CABLE – ENET CAT6A RJ45 Length 2 M

The FTM Kit simplifies the signal splitting of IO signals to each of the 505DR control units and provides a single point of termination for field signals.

Flex500 FTM kit utilizes following input/outputs from 505DR units:

- Two Speed Sensor inputs MPU #1, MPU #2 (MPU inputs).
- Four Analog input 4-20 mA channels AIN #1 AIN #4 (only in self-powered mode).
- Three Analog output 4-20 mA channels AO #1 AO #3.
- Two Actuator output channels ACT #1 ACT #2 (can work in 4-20 mA/20-200 mA current range).
- Seven Discrete input channels DI #13 DI #19 with Contact Power (DI24V_1, DI24V_2, DI_COM).
- Two Relay outputs RELAY #6, RELAY #7 (form-c).
- Relay output RELAY #8 and Discrete input DI #20 used to control interlock in redundant mode (connection between RELAY#8 from one Flex500 unit to DIN#20 from second Flex500 unit and vice versa).

Detailed information on the FTM Kit is covered in the Flex500 Manual 26838 Appendix A.

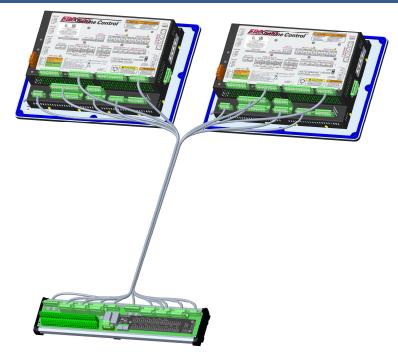


Figure 16-1. 505DR with FTM

Input and Output Signals

Please refer to Appendix A in the Flex500 hardware manual 26838 for details on IO signal wiring for each channel type.

The I/O channels are configured the same as described in V1 of this manual. When an IO channel is configured, the configuration applies to both control units. All signal scaling and calibration is applied to both units as the I/O signals are shared between both units for each channel.

The details for each IO channel type below describe how the channels function specifically in the 505XT application and how failure modes are handled.

IMPORTANT

When 505XTs are used in a Dual Redundant configuration, Relay 8 and Discrete Input 20 are used in the health status communication between the units and are not available in the application.

Analog Inputs

Each Analog Input signal should be wired to both 505DR units utilizing the wiring methods described in Appendix A of the Flex500 hardware Manual 26838. By following these wiring schemes:

- 1. A transducer mA signal is seen identically by both the Primary and Secondary units and minimizes the disturbance of a transfer.
- 2. The diodes across each unit terminals allow for unit replacement by completing the circuit when the terminal is disconnected from a 505XT unit.

Manual 35018V3

The following table describes the SYSCON and BACKUP behaviors on signal failures:

Channel	SYSCON FAULT	BACKUP FAULT	BACKUP STAT	SYSCON Transfer
Analog Input	FALSE	FALSE	Available	No
Analog Input	TRUE	FALSE	Available	Yes
Analog Input	FALSE	TRUE	Available (default)	No
Analog Input	TRUE	TRUE	Available	Yes

Table 16-2. Analog Input Fault Table

A difference between the SYSCON and BACKUP Analog Input signals will be annunciated as a difference alarm.

MPU Inputs

MPU transducer signals drive both Primary and Secondary Speed Signal Input channels such that the signal is identical between the two units. The following table describes the SYSCON and BACKUP behaviors on signal failures:

Table 16-3. Single Speed Signal Fault Table

1 Speed Signal Configured				
Channel	SYSCON FAULT	BACKUP FAULT	BACKUP STAT	SYSCON Transfer
Speed Input	FALSE	FALSE	Available	No
Speed Input	TRUE	FALSE	Available	Yes
Speed Input	FALSE	TRUE	Unavailable	No
Speed Input	TRUE	TRUE	Unavailable	Yes (TRIP)

Table 16-4. 2 Speed Signal Fault Table

2 Speed Signals Configured

z opeeu olg							
Channel	SS1 SYSCON FAULT	SS1 BACKUP FAULT	SS2 SYSCON FAULT	SS2 BACKUP FAULT	BACKUP STAT	SYSCON Transfer	
Speed Input	FALSE	FALSE	FALSE	FALSE	Available	No	
Speed Input	TRUE	TRUE	Х	FALSE	Available	No	*1
Speed Input	Х	FALSE	TRUE	TRUE	Available	No	*1
Speed Input	Х	TRUE	Х	TRUE	Unavailable	No	*2
Speed Input	TRUE	FALSE	FALSE	FALSE	Available	No	*3
Speed Input	FALSE	FALSE	TRUE	FALSE	Available	No	*3
Speed Input	TRUE	FALSE	TRUE	FALSE	Available	Yes	*4
Speed Input	TRUE	TRUE	TRUE	TRUE	Unavailable	Yes (TRIP)	*5

*1 – As long as there is a BACKUP signal available, the BACKUP is available.

*2 – Both MPUs faulted on the BACKUP inhibits a transfer

*3 – A single channel fault does not transfer

*4 – A fault on both SYSCON channels causes a transfer

*5 - All probes must be failed to trip on SYSCON and BACKUP

A difference between the SYSCON and BACKUP MPU signals will be annunciated as a difference alarm.

The automatic Open Wire Detection function that is available on the simplex versions of the 505 and 505XT, is not available on the DR version. This is due to the fact that the MPU signals are paralleled between the 2 controls. The open wire detection routine can be used as a manual check prior to starting the unit and is available in the Service menu under the MPU signals screens.

Manual 35018V3

To test the MPU, remove the speed signal connector from the backup unit, then initiate the test from the SYSCON unit. When complete, reattach the speed signal connector to the Backup unit. If the speed signal connector is NOT removed from the Backup unit, the test will always pass.

PROX Inputs

If active probes are used, the 505DR system will require a minimum of 2 probes and will support up to 4 probes. A minimum of 1 speed sensor per control is required and should be wired directly to the control, no wiring of active/proximity probes is supported on the DR-FTM. In the configuration of the 505DR, only select the choice of "Use Speed Input Channel 2" if 4 probes are being used (2 to each controller).

When using just 1 speed input into each controller -

- Both controllers will show the validated speed as the value seen by the SYSCON
- The 505DR will transfer SYSCON control to the other unit if it detects a failed speed input signal as per the above table
- The speed value in each controller can be seen on the Speed Inputs page under the Redundancy Overview page menu
- Adjust the "Speed Difference Tolerance" setting, on this page, to an acceptable level of difference in speed that can be tolerated when switching between the 2 units. When the difference between the SYSCON and the BACKUP exceeds this value, the control will annunciate an alarm and make the BACKUP unit unavailable

Contact Inputs

In a healthy system, the SYSCON and BACKUP contact input signals will be identical. A difference between the SYSCON and BACKUP Contact Input signals will be annunciated as a difference alarm. In the case of a signal difference, the 505XT control will *always* follow the SYSCON signal status.

If a DI difference alarm is present, an operator action or event causing a SYSCON transfer may result in unexpected results, including a TRIP.

Relay Outputs

Relay Outputs will follow the SYSCON demand signal. When the SYSCON drives a Relay Output channel to energize, that output is also energized on the BACKUP unit channel. The Appendix A wiring diagrams of manual 26838 illustrate how to wire these as a logical AND or an OR of the two relay outputs to the field device.

Analog Outputs

Analog Output currents are shared between the SYSCON and BACKUP units. The BACKUP unit will output a constant 2mA demand as a circuit health check. The SYSCON will output a 16-18mA signal to modulate the output demand according to the control logic. On detection of a BACKUP fault, the SYSCON will pick up the BACKUP demand and output the full 4-20mA demand. On detection of a SYSCON fault, the SYSCON will transfer and the new SYSCON unit will pick up the full 4-20mA demand.

The following table describes the SYSCON and BACKUP behaviors on signal failures, depending on whether the Analog Output is configured as a Readout or is being used as an Actuator Driver:

Manual 35018V3	505XT Dual Redundant Control System for Steam Turbines

Channel	SYSCON FAULT	BACKUP FAULT	BACKUP STAT	SYSCON Transfer
Analog Output (RO)	FALSE	FALSE	Available	No
Analog Output (RO)	TRUE	FALSE	Available	Yes
Analog Output (RO)	FALSE	TRUE	Available	No
Analog Output (RO)	TRUE	TRUE	Available	Yes
Channel	SYSCON FAULT	BACKUP FAULT	BACKUP STAT	SYSCON Transfer
Analog Output (Driver)	FALSE	FALSE	Available	No
Analog Output (Driver)	TRUE	FALSE	Available	Yes
Analog Output (Driver)	FALSE	TRUE	Unavailable	No
Analog Output (Driver)	TRUE	TRUE	Unavailable	Yes (TRIP)

Table 16-5. Analog Output Fault Table

Actuator Outputs

Actuator Output currents are shared between the SYSCON and BACKUP units. The BACKUP unit will output a constant current demand, equal to half of the Minimum current setting, as a circuit health check. The SYSCON will output half of the Minimum current plus the full 0-100% current value signal to modulate the output demand according to the control logic. On detection of a BACKUP fault, the SYSCON will pick up the BACKUP demand and output the full current demand. On detection of a SYSCON fault, the SYSCON will transfer and the new SYSCON unit will pick up the full current demand.

 When the high current range (0-200 mA) is used on the actuator channels, it is possible to damage the readback circuit on the controller if both the following events occur: 1. A wiring fault (open wire) exists on one of the actuator return wires (this cannot be detected or annunciated by the application)
2. Operator commands both units to enter "Run Alone" mode – which directs both controllers to become SYSCON

It is critical on these circuits to use the DR-FTM or if not using it to wire correctly as per the hardware manual (using isolation diodes on both the positive and negative signal lines) in order to have correct output current readback signals.

The following table describes the SYSCON and BACKUP behaviors on signal failures:

Table 16-6. Driver Single Coil Fault Table

Single Coil Shared Actuators						
Channel	SYSCON FAULT	BACKUP FAULT	BACKUP STAT	SYSCON Transfer		
Actuator Driver	FALSE	FALSE	Available	No		
Actuator Driver	TRUE	FALSE	Available	Yes		
Actuator Driver	FALSE	TRUE	Unavailable	No		
Actuator Driver	TRUE	TRUE	Unavailable	Yes (TRIP)		

Manual 35018V3

505XT Dual Redundant Control System for Steam Turbines

Table 16-7. Driver Dual Coil or Redundant Fault Table

Dual Coil and R	edundant A	Actuators					
Channel	HP A SYSCO N	HP A BACKUP	HP B SYSCON	HP B BACKUP	BACKUP STAT	SYSCON Transfer	
Actuator Driver	FALSE	FALSE	FALSE	FALSE	Available	No	
Actuator Driver	TRUE	FALSE	Х	FALSE	Available	Yes	*1
Actuator Driver	Х	FALSE	TRUE	FALSE	Available	Yes	*1
Actuator Driver	FALSE	TRUE	Х	Х	Unavailable	No	*2
Actuator Driver	Х	Х	FALSE	TRUE	Unavailable	No	*2
Actuator Driver	TRUE	FALSE	TRUE	FALSE	Available	Yes	*3
Actuator Driver	TRUE	TRUE	TRUE	Х	Unavailable	No (TRIP)	*4
Actuator Driver	TRUE	Х	TRUE	TRUE	Unavailable	No (TRIP)	*4

Dual Coil and Redundant Actuators

*1 – Always transfer on a SYSCON Actuator fault if both BACKUPs are healthy

*2 - A BACKUP fault of either A / B inhibits the transfer

*3 – A fault on both A/B drivers on the SYSCON will transfer to BACKUP if they are both healthy

*4 - A fault on both A/B drivers will cause a TRIP if there is also a fault on one of the BACKUP drivers

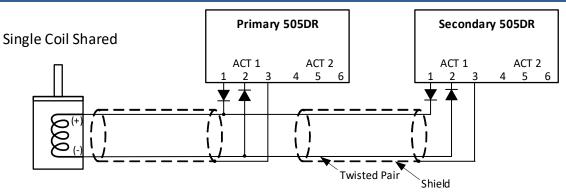
Actuator Drivers

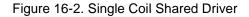
The Driver Configuration menu has been updated for new Driver functionality added in the 505DR control. The 505DR supports configurations for 3 types of actuators: Single Coil, Dual Coil, and Redundant Actuators for both the HP and LP valve output demands. In addition, the driver demands can also be routed to Woodward Digital Drivers or a LinkNet RTC node for bumpless SYSCON transfers. For splitrange applications, HP2 and LP2 are supported as a Single Coil configuration.

The actuator functions (HP, HP2, LP, and LP2) can be configured on any of the following channels or Digital Drivers:

- Actuator 1 or 2 Outputs
- Analog Outputs 1-6
- SPC Digital Drivers (configurable for up to 4 units)
- RTCNet Node 26 Analog Output 1 or 2

Actuator Types


The sections below detail the actuator types supported by the 505DR.


Single Coil

A Single Coil actuator is a single demand signal to the final drive device. The device may be an actuator coil or digital driver (VariStroke, VariStroke, CPCII etc.). The drive signal is shared between the configured channel of the Primary and Secondary 505DR units. The BACKUP unit outputs the backup demand (trickle) current that should be configured to equal ½ of the minimum current, as a health check on the backup unit circuit. The SYSCON outputs the required current (plus half of the Minimum current) to drive the coil from 0 to 100%. For example the backup demand current for a 4-20 mA output should be set to 2 mA.

Manual 35018V3

505XT Dual Redundant Control System for Steam Turbines

IMPORTANT It is recommended to use the 505DR FTM which builds-in the diode and wire junctions between Actuator Output channels on the Primary and Secondary units.

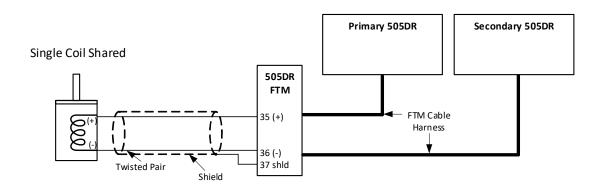


Figure 16-3 Single Coil Shared Driver with 505DR FTM

Dual Coil

A Dual Coil actuator requires two independent output demand signals to the final drive. The position of the actuator is the summed total of the mA current demands from the two demand signals. In this configuration, each drive signal is ½ of the total current demand. Upon failure of one of the demand signals, the healthy demand signal will step up to demand the full drive current.

For example – if the dual coil actuator requires 20-160 mA for full stroke from 0-100%, then the backup demand current for each of the actuator channels should be set to 5 mA. Thus when both controllers and all actuator circuits are healthy the sum of the current outputs will equal 20 mA at a demand of 0%. The application will automatically account for providing the correct output current required on the healthy channels due to any faults detected.

Manual 35018V3

505XT Dual Redundant Control System for Steam Turbines

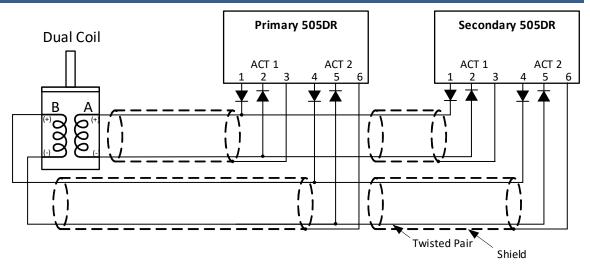
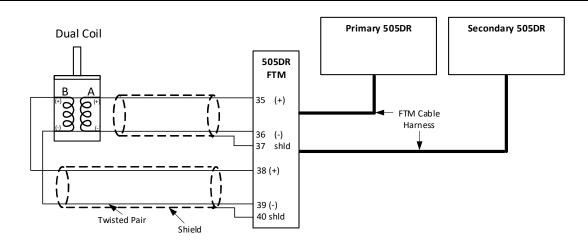



Figure 16-4 Dual Coil Driver

IMPORTANT It is recommended to use the 505DR FTM which builds-in the diode and wire junctions between Actuator Output channels on the Primary and Secondary units.

Redundant (parallel) Actuators

A Redundant Actuator application requires two independent output demand signals to two separate final drive devices. In this configuration, the 505DR outputs the full demand signal on each output. Typically the valve position is driven by the high signal select (HSS) of the two servos.

For example – if the redundant actuators require 20-160 mA for full stroke from 0-100%, then the backup demand current for each of the actuator channels should be set to 10 mA. Thus when both controllers and all actuator circuits are healthy, both of the servos will receive an output current of 20 mA at a demand of 0%. The application will automatically account for providing the correct output current required on the healthy channels due to any faults detected.

The following are a couple examples of redundant actuators that are available from Woodward that would be configured as redundant actuators in the 505DR.

Manual 35018V3

505XT Dual Redundant Control System for Steam Turbines

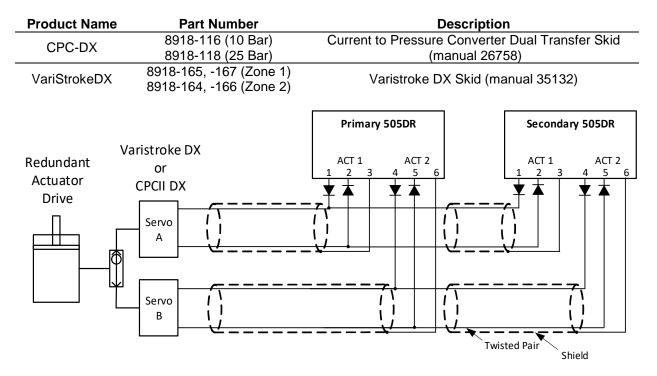


Table 16-8. Woodward Redundant Actuators

Figure 16-6. Redundant (Parallel) Actuator Driver

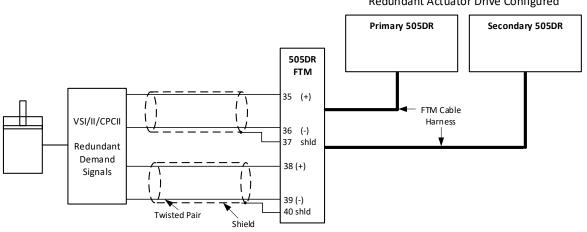
It is recommended to use the 505DR FTM which builds-in the diode and wire junctions between Actuator Output channels on the Primary and Secondary units.

					Primary 505DR	Secondary 505DR
Redundant Actuator Drive	Varistroke DX or CPCII DX			505DR FTM		
Dive	Servo A			35 (+) 36 (-) 37 shld	FTM Cable Harness	
	Servo B			38 (+)		
		Twisted Pair	Shield	39 (-) 40 shld		

Figure 16-7. Redundant (Parallel) Actuator Driver with 505DR FTM

Manual 35018V3

505XT Dual Redundant Control System for Steam Turbines


When a Redundant Actuator is configured, the Boolean Input function lists can be used to provide the health status of each actuator driver back to the 505DR. The Boolean input can be configured for the following options:

Menu#	Boolean Input Function
52	Redundant HP A Health Contact
53	Redundant HP B Health Contact
81	Redundant LP A Health Contact
82	Redundant LP B Health Contact

Table 16-9. Boolean Input Configuration Options

If both A and B drivers indicate a fault to the 505DR, the unit will trip if the HP or LP driver are configured to trip on an actuator fault.

Redundant Actuator drivers can also be used to drive redundant demands to a simplex VariStroke or CPCII unit.

Redundant Actuator Drive Configured

Figure 16-8. Actuator Driver with Redundant Demands

			Released	
Manual 35018	3V3	5052	XT Dual Redund	ant Control System for Steam Turbines
		Table 16-10.	Driver Fault Curre	ent Table
SYSCON Unit	BACKUP Unit	t System Status	Actuator Type	Act Current Output
Yes	Yes	Healthy	Single Coil Shared	SYSCON = Valve Demand + $\frac{1}{2}$ of the Min Act current BACKUP = $\frac{1}{2}$ of the Min Act current
Yes	No	BACKUP Unavailable	Single Coil Shared	SYSCON = Valve Demand + full Min Act current BACKUP = Zero Act current
Yes initially then NO	Yes	BACKUP Takes Over as SYSCON	Single Coil Shared	SYSCON = Zero Act current BACKUP = Valve Demand + full Min Act current
No	No	Tripped	Single Coil Shared	SYSCON = Zero Act current BACKUP = Zero Act current
Yes	Yes	Healthy	Dual Coil Actuators	SYSCON =Valve1 = $\frac{1}{2}$ Demand + $\frac{1}{2}$ of the Min Act currentValve2 = $\frac{1}{2}$ Demand + $\frac{1}{2}$ of the Min Act current
				BACKUP = Valve1 = $\frac{1}{2}$ of the Min Act current Valve2 = $\frac{1}{2}$ of the Min Act current
Yes	No	BACKUP Unavailable	Dual Coil Actuators	SYSCON = Valve1 = $\frac{1}{2}$ + full Min Act current Valve2 = $\frac{1}{2}$ Demand + full Min Act current
				BACKUP = Valve1 = Zero current Valve2 = Zero current
Yes initially then NO	Yes	BACKUP Takes Over as SYSCON	Dual Coil Actuators	SYSCON = Valve1 = Zero current Valve2 = Zero current
				BACKLIP =

				BACKUP =
				Valve1 = $\frac{1}{2}$ Demand + full Min Act current
				Valve2 = $\frac{1}{2}$ Demand + full Min Act current
No	No	Tripped	Dual Coil	SYSCON =
			Actuators	Valve1 = Zero current
				Valve2 = Zero current
				BACKUP =
				Valve1 = Zero current
				Valve2 = Zero current
Yes	Yes	Healthy	Redundant	SYSCON =
			A atu a taua	Valuat Full Demand 1 1/ of the Min Act summers

Valve1 = Full Demand + $\frac{1}{2}$ of the Min Act current Actuators Valve2 =Full Demand + $\frac{1}{2}$ of the Min Act current

> BACKUP = Valve1 = $\frac{1}{2}$ of the Min Act current Valve2 = $\frac{1}{2}$ of the Min Act current

Manual 35018	18V3 505XT Dual Redundant Control System for Steam Turbines			
SYSCON Unit	t BACKUP Unit OK	System Status	Actuator Type	Act Current Output
Yes	No	BACKUP	Redundant	SYSCON =
		Unavailable	Actuators	Valve1 = Full Demand + full Min Act current
				Valve2 = Full Demand + full Min Act current
				BACKUP =
				Valve1 = Zero current
				Valve2 = Zero current
Yes initially	Yes	BACKUP Takes	Redundant	SYSCON =
then NO		Over as	Actuators	Valve1 = Zero current
		SYSCON		Valve2 = Zero current
				BACKUP =
				Valve1 = Full Demand + full Min Act current
				Valve2 = Full Demand + full Min Act current
No	No	Tripped	Redundant	SYSCON =
		FF	Actuators	Valve1 = Zero current
				Valve2 = Zero current
				BACKUP =
				Valve1 = Zero current
				Valve2 = Zero current
Yes	Yes	Healthy	Digital Valve	SYSCON = Full Valve Demand
				BACKUP = Full Valve Demand
Yes	No	BACKUP	Digital Valve	SYSCON = Full Valve Demand
		Unavailable		BACKUP = Zero Valve Demand
Yes initially	Yes	BACKUP Takes	Digital Valve	SYSCON = Zero Valve Demand
then NO		Over as SYSCON	-	BACKUP = Full Valve Demand
No	No	Tripped	Digital Valve	SYSCON = Zero Valve Demand
			-	BACKUP = Zero Valve Demand

Control Drivers

The 505DR can send actuator demand signals (HP, HP2, LP, or LP2) from any of the Analog or Actuator output channels on the 505DR platform. The 505DR also supports sending the HP, HP2, LP, or LP2 demand signals from a digital driver via CAN from an RTCNet Node, up to 4 SPCs, or 2 VSII.

Manual 35018V3

505XT Dual Redundant Control System for Steam Turbines

Configuration of Actuator Drivers

- 1. Login to the Configure User Level and then enable Configuration Mode from the Mode Screen
- 2. Navigate to the Configuration Menu, then select the Drivers page
- 3. On the Drivers page, the Left and Right Arrow Keys cycle between the Driver Types: HP, HP2, LP, and LP2.
- 4. Once the Driver Type (HP, HP2, LP, or LP2) has been selected, first select the Actuator Type. There are three Actuator Types supported:
 - a. Single Coil
 - b. Dual Coil
 - c. Redundant Actuators

HP Driver Configuration	User Level: Operator Mode: Configuration
Actuator Type	Not Used
Driver	Single Coil 🦒 🔽
Use Fault SD?	Dual Coil
Invert Driver Output?	Redundant Actuator
Primary 505 AO/ACT Secondary 505 AO/ACT	mA Drive
ł	

Figure 16-9. Actuator Type Configuration

- 5. After the Actuator Type is selected, the output channel Driver needs to be set. For the 505DR, the channel is selected from this page in the Driver drop down list. The available channels are:
 - a. Actuator Output 1
 - b. Actuator Output 2
 - c. Analog Output 1
 - d. Analog Output 2
 - e. Analog Output 3
 - f. Analog Output 4
 - g. Analog Output 5
 - h. Analog Output 6
 - i. RTC Node 26 Analog Output 1
 - j. RTC Node 26 Analog Output 2
 - k. SPC Driver (SPC node number is determined by the function)
 - i. HP Driver: SPC11
 - ii. HP Coil/Red A Driver: SPC11
 - iii. HP Coil/Red B Driver: SPC 13
 - iv. HP2 Driver: SPC13
 - v. LP Driver: SPC12
 - vi. LP Coil/Red A Driver: SPC12
 - vii. LP Coil/Red B Driver: SPC 14
 - viii. LP2 Driver: SPC14

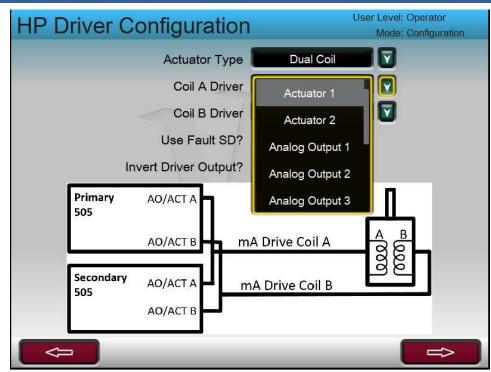


Figure 16-10. Driver Channel Configuration

If an SPC is configured, an option for an Analog Backup driver will be made available. This demand signal can be configured on an Analog Output channel of the 505DR to provide the drive signal in the case of a CAN communication failure. Analog Backup demands can be configured on one of the following channels:

- 1. Actuator Output 1
- 2. Actuator Output 2
- 3. Analog Output 1
- 4. Analog Output 2
- 5. Analog Output 3
- 6. Analog Output 4
- 7. Analog Output 5
- 8. Analog Output 6
- 9. RTC Node 26 Analog Output 1
- 10. RTC Node 26 Analog Output 2

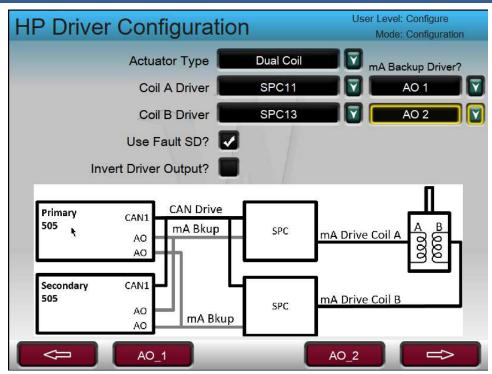
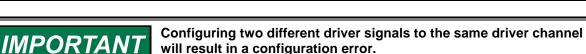



Figure 16-11. mA Backup Channel Configuration

If an SPC or RTCNet AO channel is used, the CAN network needs to IMPORTANT be enabled in the Woodward Links configuration menu.

Once a channel has been selected, the configuration of that channel IMPORTANT function is overridden by the control logic.

will result in a configuration error.

- 1. If a Dual Coil or Redundant Actuator Type is configured, an option for the A and B demand signals will become available. Each of these signals have the same options as above.
- 2. Once the Driver channels have been selected, the Driver configuration is complete.
- 3. Channel specifics can be configured for each driver (Tag, Scaling, and Calibration) can be configured on the channel pages. Links to the channel pages will be provided in the 2 and 3 softkey locations as they are configured.

HP Driver Configuration	User Level: Operator Mode: Configuration
Actuator Type Dual O	Coil
Coil A Driver Actuat	ior 1 🔽 🔽
Coil B Driver Actuat	tor 2
Use Fault SD? 🔽	
Invert Driver Output?	
Primary AO/ACT A 505 AO/ACT B MA Drive Coil	
Secondary AO/ACT A MA Drive Coi AO/ACT B	
	ACT_2

Figure 16-12. Driver Configuration Page Buttons

CAN Devices – Optional I/O and Digital Drivers

Each CAN port used on the Primary and Secondary are paired together such that both units operate as a node on the same network and either unit can communicate with the devices on the network in the case of a SYSCON transfer. In a redundant application, the SYSCON unit sends CAN messages to the devices on the network and the BACKUP unit remains active on the network, but does not send messages. On a failover, the new SYSCON resumes sending messages after the failover time.

IMPORTANT The CAN communication timeout on end devices should be set to 100ms or greater in order to allow the SYSCON transfer time to resume sending messages on the network without timing out.

The CAN communication ports are available for interfacing the control application with other products. The 505XT has been programmed these to be used for the following:

- CAN #1 Link to digital drivers/actuators (such as the SPC and VariStroke family)
- CAN #2 Link to RTCNet distributed I/O nodes
- CAN #3 Link to Power management products (such as LS-5, MFR300)
- CAN #4 Reserved

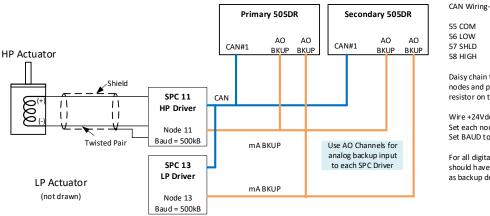
Manual 35018V3

505XT Dual Redundant Control System for Steam Turbines

Servo Position Controller (SPC)

Four SPC's (p/n 8200-227) are pre-programmed in the control application to have CAN interfaces to this product. These digital drivers (manual 26236) support a variety of actuator interfaces including proportional or integrating valves, single coil drives of up to +/- 250 mA, with single or redundant position feedback. They must be configured and calibrated with the SPC Service Tool from a user PC.

Figure 16-13. Servo Position Controller


The 505DR can be used with an SPC utilizing CAN as the primary driver signal as well as an Analog Backup option. The 505DR has pre-designated the Node ID of SPC devices based on the actuator function. For example, HP Drivers are on SPC ID 11 and LP Drivers are on SPC ID 12.

Node Device ID	Part Number	Description
HP (A) Driver ID=11	8200-227	Servo Position Controller (manual 26236)
LP Driver ID=12	8200-227	Servo Position Controller (manual 26236)
HP (B) / HP2 Driver ID=13	8200-227	Servo Position Controller (manual 26236)
LP (B) / LP2 Driver ID=14	8200-227	Servo Position Controller (manual 26236)

Table 16-11. Available	(programmed) SPC Drivers
------------------------	--------------------------

505XT Dual Redundant Control System for Steam Turbines

55 COM 56 LOW

Daisy chain this COMM link thorugh all nodes and place a 12ohm termination resistor on the last node.

Wire +24Vdc power to each node Set each node to Node Address shown. Set BAUD to 2=500kB

For all digital drivers, the configuration should have CAN as primary and analog as backup demand.

Figure 16-14. SPC Driver CAN Links

On a SYSCON transfer, the actuator demand is constant resulting in a bumpless failover at the actuator. See the Failover Performance section in Chapter 3.

To configure an SPC for use, select the SPC Driver for the HP/HP2/LP/LP2 function from Driver option in the Driver Configuration Menu. This will automatically activate the CAN network to look for an SPC at the associated Node ID. If an Analog Backup is going to be used, select the channel that will drive the Analog Backup from the Driver dropdown menu that appears when an SPC is selected as the driver in the Driver Configuration Menu.

SPC Configurations

If using 2 SPC's for redundant actuators - configure the following parameters

- Set Servo Controller Min & Max Position Currents to the appropriate currents for the proportional • actuator being used (below example is a 20-160 mA coil)
- Set the Position Demand source to be either CANOpen Only, if no analog backup input is used, or as • CANOpen Primary, if an analog backup input is used and connected to an analog output channel from the 505DR.
- Set the Position Demand Fault Response as a Shutdown •
- Configure the CANOpen communication link as show with baud rate of 500 kb/s, a timeout of 60ms and the correct Node ID for the function (For HP Demand 11 & 13, for LP Demand 12 & 14)

Manual 35018V3	35018V3 505XT Dual Redundant Control System for Steam Turbin							
😤 Configuration File Editor - Config	_SPC11_wANA_primary_dualcoil.cfg		_		×			
File Help								
D 😅 🖬 🖹 🖹 🖌 💡								
Servo Controller Position Demand Fee	dback Position Error Driver CANopen							
Controller Type								
Proportional	Minimum Position Current:	20.00 m						
-	Lag Time Constant:	160.00 m						
ОР	Command Trim Enable							
ОЫ	Gain adjustments are made from	m CANopen						
0.1	Controller Integral Gain:	0.000						
⊖ PI w/ Lag	Min Position Wind-Up Threshold:	0.0 %						
○ PI w/ Lead-Lag	Max Position Wind-Up Threshold:	90.0 %	,					

Figure 16-15a. SPC Driver Configuration for Redundant Actuators

Manual 35018V3	505XT Dual Redundant	Control Syste	m for Ste	am Tu	rbines
😤 Configuration File Editor - Configu	iration2.cfg		_		×
File Help					
🗋 🚘 🖬 🛤 🖿 👔					
Servo Controller Position Demand Feed	back Position Error Driver CANopen				
Position Demand Source					
CANopen Only	Position Demand Fault Response:	Shutdown	⊖ Alarm		
CANopen Primary					
○ Analog Only					
○ Analog Primary					

Figure 16-15b. SPC Driver Configuration for Redundant Actuators

Manual 35018V	3		505XT	Dual F	Redundant	Control Sy	stem	for St	eam T	urbines
😤 Configuratio File Help	n File Editor - Co	onfiguratio	n1.cfg					_		×
🗅 🚅 🖫 🖹	, E¶ ¥									
Servo Controller	Position Demand	Feedback	Position Error	Driver	CANopen					
Position De	emand Sourc	e	Analog Settings							
0			0% Position De			4.0	_			
CANopen (Dnly		100% Position	Demand	:	20.0	0 mA			
CANopen F	Primary		Redundant Posi	tion Dem	and Settings					_
			Tracking Error	Thresho	ld:	10.0	0 %			
Analog On	ly		Tracking Error	Delay:		5.0	0 s			
Analog Prir	nary		Position Demand) Shutda	wn (⊖ Alarm		

Figure 16-15c. SPC Driver Configuration for Redundant Actuators

Manual 35018V3	505XT Dual Redundant	Control System f	for Steam	Turbines
😤 Configuration File Editor - Configu	ration2.cfg		- 0	×
File Help				
🗋 🚅 🔛 🚉 🖻 🧣				
Servo Controller Position Demand Feed	back Position Error Driver CANopen			
Feedback 1				
	Position Range Threshold:	100.00 %		
4-20mA	Feedback Fault Response:	 Shutdown 	Alarm	
🔿 A Only	✓ Latch feedback faults			
() А - В				
○ (A - B) / (A + B)				
O DC Voltage				
Feedback 2				
Not Used				
🔿 A Only				
() A - B				
(A - B) / (A + B)				
O DC Voltage				

Figure 16-15d. SPC Driver Configuration for Redundant Actuators

Manual 35018V3

505XT Dual Redundant Control System for Steam Turbines

	VITATILICS AIATTI SE	UD Includication		Word	has reco
😤 Configuration File Editor - Configura	tion2.cfg		_		×
File Help					
🗋 🚘 🖬 🛤 🖻 🕯 🖁					
Servo Controller Position Demand Feedba	ack Position Error	Driver CANopen			
Fault 1 Threshold:	100.00 %				
Fault 1 Delay:	1.00 s				
Fault 2 Threshold:	100.00 %				
Fault 2 Delay:	0.10 s				
Fault 2 Response:	O Shutdown	Alarm			
☑ Latch position error faults					

Figure 16-15e. SPC Driver Configuration for Redundant Actuators

	W Alarins Shutu	OWER DVIR	annics - Alanni Se	100 100	anoncorori			VV0rd I	nas re
😤 Configuration File Editor - Configuration2.cfg —								×	
File Help									
	lı 🖻 🛛 💡								
Servo Controller	Position Demand	Feedback	Position Error	Driver	CANopen				
Driver Fault D	elay:		0.20 s						
Dither Curren	t:		0.00 mA						
Driver Fault R	lesponse:	0) Shutdown	◯ Alar	m				
🗹 Latch dri	ver faults								

Figure 16-15f. SPC Driver Configuration for Redundant Actuators

Manual	3501	8V3
--------	------	-----

😤 Configuration File Editor - Configuration2.cfg	_					
File Help						
Servo Controller Position Demand Feedback Position Error Driver CANopen						
CANopen Baud Rate: O 125 O 250 O 500 kbit/s						
CANopen Node Id: 11						
CANopen Timeout: 60 ms						
Calibration will be performed through CANopen.						

Figure 16-15g. SPC Driver Configuration for Redundant Actuators

If using 2 SPC's for dual coil actuators - configure the following parameters

- Set Servo Controller Min & Max Position Currents to the appropriate currents for the proportional • actuator being used (below example is a 20-160 mA coil)
- Set the Position Demand source to be Analog Only and set 0% position demand as 4.00 mA and the ٠ 100% Position Demand as 20.00 mA with Fault response as Shutdown
- Configure the CANOpen communication link as show with baud rate of 500 kb/s, a timeout of 60ms ٠ and the correct Node ID for the function (For HP Demand 11 & 13, for LP Demand 12 & 14)

😤 Configuration File Editor - Config_SPC11_wANA_primary_dualcoil.cfg								_		\times	
File Help											
Servo Controller	Position Demand	Feedback	Position Error	Driver	CANopen						
Cont	roller Type										
			Minimum Positi	on Curre	nt:		20.00	mA			
Proportio	nal		Maximum Position Current:				160.00	mA			
			Lag Time Constant:			50	ms				
OP			Command Trim Enable								
0.57			Gain adjustments are made from CANopen								
O PI			Controller Integral Gain: 0.000]					
○ PI w/ Lag											
			Min Position W	ind-Up Tl	hreshold:		0.0	%			
O PI w/Lead-Lag Max Position Wind-Up Threshold: 90.0					%						

Figure 16-16a. SPC Driver Configuration for Dual Coil Actuators

Manual 35018V3	505XT Dual Redundant Cont	trol System for Steam Turbines
😤 Configuration File Editor - Configur	ation3.cfg	- 0
File Help		
🗅 😅 🔚 🛍 🖻 🧣		
Servo Controller Position Demand Feedb	ack Position Error Driver CANopen	
Position Demand Source		
CANopen Only	0% Position Demand: 100% Position Demand:	4.00 mA
CANopen Primary	Position Demand Fault Response:	Shutdown O Alarm
0	CANopen Errors Should Cause an	Alarm
Analog Only		
O Analog Primary		

Figure 16-16b. SPC Driver Configuration for Dual Coil Actuators

Optional Distributed I/O

In the 505DR, additional I/O has been pre-programmed using Woodward's RTCNet distributed I/O nodes. These are available via the Configuration Menu (under Woodward Links) and the user is free to select any or all of the nodes listed below. All distributed I/O channels have the same menu of functional choices as the lists above for the 505 hardware I/O.

Node Device ID	Part Number	Description	I/O type/quantity
21	8200-1103*	Analog 4-20 mA I/O	8 AI and 2 AO
22	8200-1103*	Analog 4-20 mA I/O	8 AI and 2 AO
23	8200-1100	RTD Temperature Inputs	8 RTD
24	8200-1104	Discrete Input	16 DI
25	8200-1105	Discrete Output	16 DO
26	8200-1103	Analog 4-20 mA I/O	8 AI and 2 AO

*8200-1103 is the Loop Power Analog Input module. Alternatively, 8200-1102 can be used with Self Powered Analog Inputs.

The 505DR replaces the LinkNet HT nodes on CAN#2 with RTCNet nodes. The same functionality as described in Volume 1 is available with RTCNet Nodes.

Manual 35018V3

505XT Dual Redundant Control System for Steam Turbines

The RTCNet nodes can be individually purchased (1 or more) and installed based on the needs of the application. In general, the following functionality is available through Expandable I/O:

- 1. Analog AIO Nodes
 - a. Analog Inputs (8x per node)
 - i. All available analog input functions can be programmed to an AIO Node. For example: Cascade Input, Auxiliary Input, kW Load, etc.
 - ii. Vibration 4-20mA sensors can be programmed to monitor for Alarm and Trip levels
 - iii. Generic, monitoring signals (such as system pressures and temperatures) can be added and setup with Alarm and Trip levels.
 - b. Analog Outputs (2x per node)
 - i. For Nodes 21 and 22, the analog output channels can be configured as any available analog output function, but should not be used as HP or LP valve drivers due to the recursion rate of the node.
 - ii. For Node 26, the analog output channels can be configured as Valve Drivers to achieve bumpless SYSCON transfers
- 1. Discrete DI and DO Nodes
 - a. Discrete Inputs (16x per node)
 - b. All available contact input functions can be programmed to a DI node. For example: External Trip signals, External Alarm Signals, or operation commands (enable/setpoint raise / setpoint lower), etc.
 - i. Discrete Outputs (16x per node)
- 2. All available relay output functions can be programmed to a DO node. For example: Cascade Enabled, Speed PID in Control, Speed Level Switch, etc.
 - a. RTD Node (8x per Node)
 - i. RTD sensors can be directly wired to the RTD node for temperature monitoring. Each channel can be programmed with Alarm and Trip levels.

RTCNet Nodes provide a convenient method to wire field sensors to both Primary and Secondary 505DR units, without the need for splitting signals. The RTCNet node will communicate the signal to both units, providing a single termination point for all field IO. For output signals, there will be no bump or change in the signal on a SYSCON failover.

RTCNet Actuator Driver Node 26

An Analog 4-20 mA I/O module has been pre-programmed to Node 26 in the 10ms rate group to accommodate Actuator Drivers on an RTCNet node. On a SYSCON transfer, the actuator demand is constant resulting in a bumpless failover at the actuator. See the Failover Performance section in Chapter 3.

This node also supports all analog input functions on the AI channels.

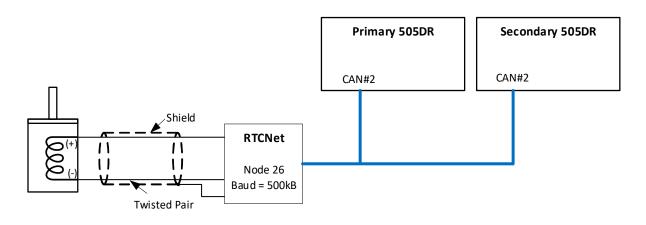


Figure 16-17. Expandable I/O Node 26 Driver (bumpless SYSCON transfer)

Manual 35018V3

Communications

Ethernet

Each 505DR unit has 3 Ethernet ports available to interface to the controllers for a total of 6 available ports to be used for Modbus communications or WWD Service Tools. Since the operating system processes all commands to the SYSCON, the turbine can be operated via Modbus from either the SYSCON or BACKUP controllers. The reference network diagrams below show two examples of how to network the Primary and Secondary controls depending on if a single or redundant network is being used.

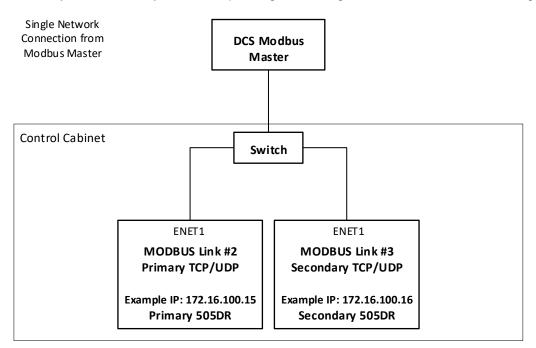


Figure 16-18. Single Network Modbus Architecture

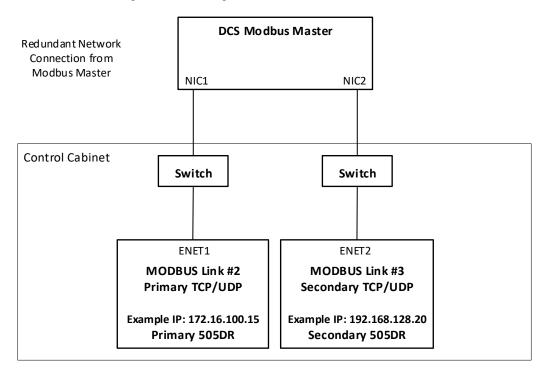


Figure 16-19. Redundant Network Modbus Architecture

Configuration Menu

The 505DR should be configured for the application as described in Volume 1 and Volume 2 of this manual, 35018.

When Configuration, Service, or Runtime settings are adjusted in either the SYSCON or BACKUP the two units will automatically synchronize the settings changes so that both units contain identical settings. When a Save Settings command is issued, both units will save settings to non-volatile memory. It is only necessary to configure or make settings updates in one of the units. The operating system will automatically update both systems to keep them in sync.

For redundancy, the following configuration options are added:

Operating Parameters Menu

Use 505DR FTM?

Select YES if 505DR FTM will be used. If YES, the Dedicated Trip Input is moved to Boolean Input Channel 13 and Dedicated Trip Relay will be moved to Relay Output 7.

If No, the Dedicated Trip Input remains on Boolean Input Channel 1 and the Dedicated Trip Relay will remain on Relay Output 1.

Driver Configuration Menu

Actuator Type dflt =Single Coil (Single Coil, Dual Coil, Redundant) Select the type of actuator for the valve driver. See the Actuator Drivers section for detailed descriptions on the Actuator Types supported.

Driver

dflt =Actuator 1 (Menu List)

Monitor Only

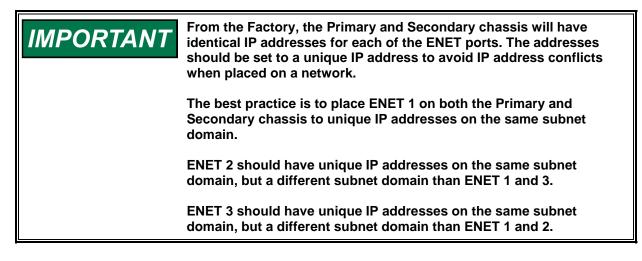
Select the 505DR channel or digital driver that will drive the actuator. See the Actuator Drivers section for detailed descriptions on the channels and digital drivers supported.

Actuator Driver Menu

Backup Demand Setting (mA)

This analog value determines the milliamp current output of the BACKUP channel. This demand provides a continuous health check on the BACKUP driver circuit. If the BACKUP unit detects a fault on the driver circuit, the BACKUP unit will be inhibited.

This value is set to ½ the Minimum current (mA at 0% Demand). If the Actuator range is 4-20mA, it will be set to 2mA. If the Actuator range is 20-160mA, it will be set to 10mA.


The lowest mA value that the BACKUP unit will detect a fault at is 0.6mA for the 4-20mA range and 4.5mA for the 0-200mA range. The Minimum current calibration setting (mA at 0% Demand) should be high enough to keep the BACKUP health check functioning correctly. Since the BACKUP demand setting is calculated to ½ the Minimum current, the Minimum current must be greater or equal to 1.2mA for the 4-20mA range or 9mA for the 0-200mA range. If the Minimum current is lower, the BACKUP circuit health check will not detect BACKUP circuit failures, creating a potential latent fault in the system.

IMPORTANT

For a dual coil actuator, there are four circuits driving the two coils that need to have an active health check current. Therefore, the Minimum current setting (mA at 0% Demand) must be greater than 2.4mA for 4-20mA range and 18mA for 0-200mA range for the BACKUP health check to function correctly.

dflt= NO (Yes/No)

Communications Menu – Secondary Chassis

Each of the ETHERNET ports is required to be configured for a unique subnet (domain) (view default settings as an example). The IP's can be set by other service tools. The top of the screen shows the current IP addresses in use on for

. each port.

Ethernet IP Configuration – Secondary Unit

)
•
=

tools and is defaulted to the following:ENET 4 ADDRESS192.168.130.20ENET 4 SUBNET MASK255.255.255.0

/3	505XT Dual Redundant Control S	ystem for Steam Turbines

Woodward Links Menu

RTCNet I/O NODES	
Enable Using RTCNet I/O Nodes?	dflt= NO (Yes/No)
Enable Node 21 (AIO)	dflt= NO (Yes/No)
If YES – set the Node Address on this device to 21	
Enable Node 22 (AIO)	dflt= NO (Yes/No)
If YES – set the Node Address on this device to 22	
Enable Node 23 (RTD)	dflt= NO (Yes/No)
If YES – set the Node Address on this device to 23	
Enable Node 24 (BI)	dflt= NO (Yes/No)
If YES – set the Node Address on this device to 24	
Enable Node 25 (BO)	dflt= NO (Yes/No)
If YES – set the Node Address on this device to 25	
Enable Node 26 (AIO)	dflt= NO (Yes/No)
If YES – set the Node Address on this device to 26	
CAN 1 Digital Drivers	

dflt= NO (Yes/No)
Monitor Only
Monitor Only
Monitor Only
Monitor Only

If SPC nodes are used, they are configured for use in the Driver Configuration Menu by selecting the SPC as the channel driver for the actuator function.

Home – Site Information

Control ID

dflt= 505XT_DR (string input)

The Control ID sets the control name in the SOS Service tool and AppManager. This should be modified when there are multiple 505DR systems to uniquely identify them on the network.

RTCNet Configuration Menu

Trip on Network Link Error?

Select YES to issue a Trip when the CAN network is failed on both the SYSCON and BACKUP units. This can be used when the RTCNodes have critical system I/O that will be lost on a CAN network failure.

Analog Inputs Menu Inhibit BACKUP on Fault?

Select YES to inhibit SYSCON transfers when an Analog Backup signal failure is detected on the BACKUP unit only (if failed on both SYSCON and BACKUP, this option is ignored). This should be used when a SYSCON transfer will result in the failed AI signal to cause a trip. For example, if the AUX Input failure is configured as a Trip condition.

Select NO to allow SYSCON transfers. If the SYSCON transfers and the AI signal is failed, the control logic will follow the behavior for a failed signal for that function described in Volume 1 of this manual.

Redundant Sensor Max Diff.

This sets the allowable difference window between redundant sensors, in engineering units. If the redundant signals differ by more than this value, an alarm will be annunciated.

This setting is found on the control function runtime screen within the Redundant Sensor softkey menu. For example, if Cascade Input #2 is programmed, then on the Cascade control page from the Home screen, press the redundant sensor softkey to access this setting.

dflt= NO (Yes/No)

dflt= NO (Yes/No)

dflt = 10.0 (0.01, 10000.0)

Woodword Links M

Manual 35018V

Manual 35018V3

505XT Dual Redundant Control System for Steam Turbines

Redundant Sensor 2 Good Equation

dflt = Average (HSS, LSS, Avg)

When both redundant sensors are healthy this value sets the equation used to calculate the Validated Signal for control. HSS = High Signal Select between the two sensors, LSS = Low Signal Select between the two sensors, AVG = Average of the two sensors.

This setting can only be tuned while the turbine is tripped.

This setting is found on the control function runtime screen within the Redundant Sensor softkey menu. For example, if Cascade Input #2 is programmed, then on the Cascade control page from the Home screen, press the redundant sensor softkey to access this setting.

Menu #	MSG_
1	Not Used
2	Remote Speed Setpoint #1
3	Synchronizing Input
4	Sync / Load Share
5	Generator Load Input #1
6	Cascade Input #1
7	Remote Cascade Setpoint
8	Auxiliary Input #1
9	Remote Auxiliary Setpoint
10	Redundant LP A Feedback
11	Redundant LP B Feedback
12	Inlet Pressure Input #1
13	Redundant HP A Feedback
14	Redundant HP B Feedback
15	Speed Feed-Forward
16	Remote Droop
17	Remote Load Setpoint
18	Exhaust Pressure Input #1
19	Spare 19
20	HP Valve Feedback Position
21	HP2 Valve Feedback Position
22	Isolated PID PV
23	Remote SP for Isolated PV
24	Signal Monitoring #1
25	Signal Monitoring #2
26	Signal Monitoring #3
27	Start Temperature 1
28	Start Temperature 2
29	Extraction/Admission Input #1
30	Remote Extr/Adm Setpoint
31	Remote Manual Extr/Adm (P) Demand
32	Remote Exhaust Pressure Setpoint
33	Remote Inlet Pressure Setpoint
34	LP Valve Position Feedback

Table 16-13. Analog Input Function List

Manual 35018V3

505XT Dual Redundant Control System for Steam Turbines

Menu #	MSG_
35	Remote Speed Setpoint #2
36	Generator Load Input #2
37	Cascade Input #2
38	Auxiliary Input #2
39	Inlet Pressure Input #2
40	Exhaust Pressure Input #2
41	Extraction/Admission Input #2
42	Vibration Signal #1
43	Vibration Signal #2
44	Vibration Signal #3
45	Vibration Signal #4
46	Vibration Signal #5
47	Vibration Signal #6
48	Vibration Signal #7
49	Vibration Signal #8
50	Spare_50

Table 16-14. Analog Output (Readout) Function List

Menu #	MSG_
1	Not Used
2	Actual Shaft Speed
3	Speed Reference Setpoint
4	Remote Speed Setpoint
5	Load Share Input
6	Synchronizing Input
7	Generator Load
8	Cascade Input Signal
9	Cascade Setpoint
10	Remote Cascade Setpoint
11	Auxiliary Input Signal
12	Auxiliary Setpoint
13	Remote Auxiliary Setpoint
14	Redundant LP A Feedback
15	Redundant LP B Feedback
16	Spare 16
17	Valve Limiter Setpoint
18	LSS Value
19	HP Valve Demand
20	HP2 Valve Demand
21	Inlet Pressure Input
22	Redundant HP A Feedback
23	Redundant HP B Feedback
24	Isolated PID Dmd Output
25	Isolated PID PV Input Signal

Manual 35018V3

505XT Dual Redundant Control System for Steam Turbines

Menu #	MSG_
26	Isolated PID Setpoint
27	Remote Isolated PID Setpoint
28	Remote KW Setpoint
29	Exhaust Pressure Input
30	HP Valve Feedback Position
31	HP2 Valve Feedback Position
32	Signal Monitoring #1
33	Signal Monitoring #2
34	Signal Monitoring #3
35	Start Temperature 1
36	Start Temperature 2
37	LP Valve Demand
38	LP Valve Limiter Setpoint
39	Extraction/Admission Input
40	Extraction/Admission Setpoint
41	Exhaust Pressure Setpoint
42	Inlet Pressure Setpoint
43	Speed/Load Demand (S Demand)
44	Extraction/Admission Demand (P Demand)
45	Inlet Pressure Demand (Q Demand)
46	Exhaust Pressure Demand (R Demand)
47	SPC11 AI Backup
48	SPC12 AI Backup
49	SPC13 AI Backup
50	SPC14 AI Backup
51	Spare_51
52	Spare_52
53	Spare_53
54	Spare_54
55	Spare_55

505XT Dual Redundant Control System for Steam Turbines

Table 16-15. Boolean Input Function List

Menu #	MSG_
1	Not Used
2	Reset Command
3	Speed Raise Command
4	Speed Lower Command
5	Generator Breaker
6	Utility Tie Breaker
7	Overspeed Test
8	External Run
9	Start Permissive 1
10	Idle / Rated Command
11	Halt/Continue Auto Start
12	Override MPU Fault
13	Select On-Line Dynamics
14	Local / Remote
15	Rmt Spd Setpt Enable
16	Sync Enable
17	Freq Control Arm/Disarm
18	Casc Setpt Raise
19	Casc Setpt Lower
20	Casc Control Enable
21	Rmt Casc Setpt Enable
22	Aux Setpt Raise
23	Aux Setpt Lower
24	Aux Control Enable
25	Rmt Aux Setpt Enable
26	DI Health from SPC11 Driver
27	DI Health from SPC12 Driver
28	DI Health from SPC13 Driver
29	DI Health from SPC14 Driver
30	HP Valve Limiter Open
31	HP Valve Limiter Close
32	Controlled Shutdown(STOP)
33	External Trip 2
34	External Trip 3
35	External Trip 4
36	External Trip 5
37	External Trip 6
38	External Trip 7
39	External Trip 8
40	External Trip 9
41	External Trip 10
42	External Alarm 1
43	External Alarm 2

Manual 35018V3

505XT Dual Redundant Control System for Steam Turbines

Menu #	MSG_
44	External Alarm 3
45	External Alarm 4
46	External Alarm 5
47	External Alarm 6
48	External Alarm 7
49	External Alarm 8
50	External Alarm 9
51	Spare 51
52	Redundant HP A Health Contact
53	Redundant HP B Health Contact
54	Speed Forward Enable
55	Instant Min Gov/Load Speed
56	Select Hot Start
57	Remote KW Setpoint Enable
58	Clock SYNC Pulse Contact
59	Enable Rem SP for Isolated PID
60	Isolated Controller Raise
61	Isolated Controller Lower
62	LP Valve Limiter Open
63	LP Valve Limiter Close
64	Extr/Adm Setpoint Raise
65	Extr/Adm Setpoint Lower
66	Extr/Adm Control Enable
67	Extr/Adm Remote Setpoint Enable
68	Enable Manual Extr/Adm (P) Demand
69	Inlet Pressure Setpoint Raise
70	Inlet Pressure Setpoint Lower
71	Inlet Pressure Control Enable
72	Inlet Pressure Remote Setpoint Enable
73	Exhaust Pressure Setpoint Raise
74	Exhaust Pressure Setpoint Lower
75	Exhaust Pressure Control Enable
76	Exhaust Pressure Remote SP Enable
77	Select Priority
78	Enable Decoupling
79	Manual P Demand Raise
80	Manual P Demand Lower
81	Redundant LP A Health Contact
82	Redundant LP B Health Contact
83	Spare_83
84	Spare_84
85	Spare_85
86	Spare_86
87	Spare_87

Manual 35018V3

505XT Dual Redundant Control System for Steam Turbines

Menu #	MSG_
88	Spare_88
89	External Trip 11
90	External Trip 12
91	External Trip 13
92	External Trip 14
93	External Trip 15
94	External Alarm 10
95	External Alarm 11
96	External Alarm 12
97	External Alarm 13
98	External Alarm 14
99	External Alarm 15
100	External Trip 1

Table 16-16. Relay Output Indication Function List

Boolean Indication

Menu #	MSG_
1	Not Used
2	Summary Shutdown
3	Summary Shutdown (Trip Relay)
4	Summary Alarm
5	All Alarms Clear
6	Unit is Powered & Booted-up
7	Overspeed Trip
8	Overspeed Test Enabled
9	Speed PID in Control
10	Remote Speed Setpoint Enabled
11	Remote Speed Setpoint Active
12	Underspeed Switch
13	Auto Start Sequence Halted
14	On-Line Speed PID Dynamics Mode
15	Local Interface Mode Selected
16	Frequency Control Armed
17	Frequency Control
18	Sync Input Enabled
19	Sync / Loadshare Input Enabled
20	Loadshare Mode Active
21	Cascade Control Enabled
22	Cascade Control Active
23	Remote Cascade Setpoint Enabled
24	Remote Cascade Setpoint Active
25	Auxiliary Control Enabled
26	Auxiliary Control Active
27	Auxiliary PID in Control
28	Remote Auxiliary Setpoint Enabled

Manual 35018V3

505XT Dual Redundant Control System for Steam Turbines

Menu #	MSG_	
29	Remote Auxiliary Setpoint Active	
30	Turbine Started	
31	Spare 31	
32	Primary Unit is SYSCON	
33	Secondary Unit is SYSCON	
34	Healthy Redundant Mode (Backup Ready)	
35	HP Valve Limiter in Control	
36	Command from Modbus BW addresses	
37	Reset Pulse (2 sec)	
38	Open GEN Breaker Cmd	
39	Feed-Forward Enabled	
40	Feed-Forward Active	
41	Cascade PID in Control	
42	Ready to Start	
43	Spare 43	
44	Spare 44	
45	All Trips Cleared (No SD)	
46	Remote KW SP Enabled	
47	Remote KW Setpoint Active	
48	Manual Relay Control	
49	Isolated Controller in Auto	
50	LP Valve Limiter in Control	
51	Extr/Adm Control Enabled	
52	Extr/Adm Control Active	
53	Extr/Adm PID In Control	
54	Remote Extr/Adm Setpoint Enabled	
55	Remote Extr/Adm Setpoint Active	
56	Inlet Pressure Control Enabled	
57	Inlet Pressure Control Active	
58	Inlet Pressure PID In Control	
59	Remote Inlet Pressure Setpoint Enabled	
60	Remote Inlet Pressure Setpoint Active	
61	Exhaust Pressure Control Enabled	
62	Exhaust Pressure Control Active	
63	Exhaust Pressure PID In Control	
64	Remote Exhaust Pressure SP Enabled	
65	Remote Exhaust Pressure SP Active	
66	Priority Selected	
67	Alternate Mode Enabled	
68	Controlling on Steam Map Limiter	
69	Priority Active	
70	Extr/Adm Input Failed	

Manual 35018V3

505XT Dual Redundant Control System for Steam Turbines

Menu #	MSG_	
71	Inlet Pressure Input Failed	
72	Exhaust Pressure Input Failed	
73	Zero Speed Detected	
74	Spare_74	
75	Spare_75	
76	Spare_76	
77	Spare_77	
78	Spare_78	
79	Spare_79	
80	Spare_80	

Manual 35018V3

505XT Dual Redundant Control System for Steam Turbines

Table 16-17. Relay Output Level Switch Function List

Relay Level Switch Menu

Menu #	MSG_	
1	Not Used	
2	Actual Speed	
3	Speed Setpoint	
4	KW Input	
5	Sync/Load Share Input	
6	Cascade Input	
7	Cascade Setpoint	
8	Auxiliary Input	
9	Auxiliary Setpoint	
10	Spare 10	
11	Spare 11	
12	HP Valve Limiter	
13	LSS Value	
14	HP Valve Demand Output	
15	HP2 Valve Demand Output	
16	Inlet Pressure	
17	Exhaust Pressure	
18	Customer Defined Monitor Input #1	
19	Customer Defined Monitor Input #2	
20	Customer Defined Monitor Input #3	
21	LP Valve Limiter	
22	LP Valve Demand	
23	Speed/Load Demand (S Demand)	
24	Extr/Adm Input	
25	Extr/Adm Setpoint	
26	Ext/Adm Demand (P Demand)	
27	Inlet Pressure Setpoint	
28	Inlet Pressure Demand (Q Demand)	
29	Exhaust Pressure Setpoint	
30	Exhaust Pressure Demand (R Demand)	
31	Spare_31	
32	Spare_32	
33	Spare_33	
34	Spare_34	
35	Spare_35	

Manual 35018V3

505XT Dual Redundant Control System for Steam Turbines

Actuator Driver Function List

Menu List

See the Actuator Drivers section in this chapter for details on the available channels for the following functions. Actuator functions are configured in the Driver Configuration Menu. The menu does not chose a function based on the channel configuration like the other IO channels. For Drivers, the channel is chosen for the function.

Т	Table 16-18. Actuator Driver Function List		
	Menu #	MSG_	
	1	Not Used	
	2	HP Valve Demand	
	3	HP Dual Coil A VIv Dmd	
	4	HP Dual Coil B VIv Dmd	
	5	HP Redund Act A VIv Dmd	
	6	HP Redund Act B VIv Dmd	
	7	LP Valve Demand	
	8	LP Dual Coil A VIv Dmd	
	9	LP Dual Coil B VIv Dmd	
	10	LP Redund Act A VIv Dmd	
	11	LP Redund Act B VIv Dmd	
	12	HP2 Valve Demand	
	13	LP2 Valve Demand	
	14	Isolated PID Dmd Output	
	15	Spare_15	

Configuration Error Messages

When using the 505DR, the Configuration Error Message list in Volume 1 of this manual is replaced with the following list.

Event ID	Description	Error Meaning
1	Duplicate Contact Input Channel	Two contact inputs were programmed for the same function.
2	Contact Input Error	Should never appear (always FALSE) since Contact Input 01 is hard coded as a trip input.
3	Contact Input 02 Error	The specified contact input was configured for a function that is not configured as used. Either the contact input was mis-configured or the function required is mis-configured. For example, contact input #1 is programmed for Remote Cascade Set Point Enable but Remote Cascade Set Point was not programmed under the Cascade configure menu.
4	Contact Input 03 Error	See "Contact Input 02 Error".
5	Contact Input 04 Error	See "Contact Input 02 Error".
6	Contact Input 05 Error	See "Contact Input 02 Error".
7	Contact Input 06 Error	See "Contact Input 02 Error".
8	Contact Input 07 Error	See "Contact Input 02 Error".
9	Contact Input 08 Error	See "Contact Input 02 Error".
10	Contact Input 09 Error	See "Contact Input 02 Error".
11	Contact Input 10 Error	See "Contact Input 02 Error".

Event ID	Description	Error Meaning
12	Contact Input 11 Error	See "Contact Input 02 Error".
13	Contact Input 12 Error	See "Contact Input 02 Error".
14	Contact Input 13 Error	See "Contact Input 02 Error".
15	Contact Input 14 Error	See "Contact Input 02 Error".
16	Contact Input 15 Error	See "Contact Input 02 Error".
17	Contact Input 16 Error	See "Contact Input 02 Error".
17	Contact Input 17 Error	See "Contact Input 02 Error".
	· ·	-
19	Contact Input 18 Error	See "Contact Input 02 Error".
20	Contact Input 19 Error	See "Contact Input 02 Error".
21	Contact Input 20 Error	See "Contact Input 02 Error".
22	Duplicate Analog Input Channel	Two analog inputs were programmed for the same function.
23	Analog Input 01 Error	The specified analog input was configured for a function that is not configured as used. Either the analog input was mis-configured or the function required is mis-configured. For example, analog input #1 is programmed for Remote Cascade Set Point but Remote Cascade Set Point was not configured under the Cascade configuration menu.
24	Analog Input 02 Error	See "Analog Input 01 Error".
25	Analog Input 03 Error	See "Analog Input 01 Error".
26	Analog Input 04 Error	See "Analog Input 01 Error".
27	Analog Input 05 Error	See "Analog Input 01 Error".
28	Analog Input 06 Error	See "Analog Input 01 Error".
29	Analog Input 07 Error	See "Analog Input 01 Error".
30	Analog Input 08 Error	See "Analog Input 01 Error".
31	Relay 01 Error	The specified relay was programmed for a function that is not configured as used. Either the relay was mis-configured or the function required is mis- programmed. For example, relay #1 is configured for Remote Cascade Set Point Enabled but Remote Cascade Set Point was not configured under the Cascade configure menu.
32	Relay 02 Error	See "Relay 01 Error".
33	Relay 03 Error	See "Relay 01 Error".
34	Relay 04 Error	See "Relay 01 Error".
35	Relay 05 Error	See "Relay 01 Error".
36	Relay 06 Error	See "Relay 01 Error".
37	Relay 07 Error	See "Relay 01 Error".
38	Relay 08 Error	See "Relay 01 Error".
39	Analog Output 01 Error	The specified readout was configured for a function that is not configured as used. Either the readout was mis-configured or the function required is mis- configured. For example, readout #1 is configured for Cascade Set Point but Cascade Control was not configured under the Cascade configure menu.
40	Analog Output 02 Error	See "Analog Output 01 Error".
41	Analog Output 03 Error	See "Analog Output 01 Error".

Event ID	Description	Error Meaning
42	Analog Output 04 Error	See "Analog Output 01 Error".
43	Analog Output 05 Error	See "Analog Output 01 Error".
44	Analog Output 06 Error	See "Analog Output 01 Error".
45	Duplicate HP Configured	Both actuator channels have been configured for the HP valve functionality. This function is only allowed on one channel.
46	Duplicate HP2 Configured	Both actuator channels have been configured for the HP2 valve functionality. This function is only allowed on one channel.
47	Duplicate LP Configured	There is more than 1 selection for the LP valve demand output
48	Duplicate LP2 Configured	There is more than 1 selection for the LP2 valve demand output
49	HP Driver Selection Error	The Actuator Type (single coil, dual coil, redundant) does not have appropriate driver channels selected.
50	LP Driver Selection Error	The Actuator Type (single coil, dual coil, redundant) does not have appropriate driver channels selected.
51	LP2 Driver Selection Error	The Actuator Type (single coil, dual coil, redundant) does not have appropriate driver channels selected.
52	Two Actuators Config. to One Channel	The same channel (example: Actuator Output 1) has been selected twice for two different functions (HP, LP) on the Driver Configuration Menu
53	Spare 53	, ,
54	Spare 54	
55	Spare 55	
56	Max KW Load > Max KW AI Scale	The KW Max Load setting was programmed at a higher value than the maximum KW input (KW input at 20 mA).
57	Selected KW Source Not Configured	Occurs when a Primary or Secondary kW Signal source has been selected under Operating Parameters but that source is not configured. For example, Primary kW Source is set as 'Analog Input' but no analog input is configured as a kW Input.
58	Auxiliary Configured, No Al	The Auxiliary control function was configured but no Auxiliary analog input was configured.
59	KW AUX Configured, AUX AI Configured	The Auxiliary control function was configured to use the kW analog input but an Auxiliary analog input was configured also. With this configuration, only the kW analog input is used for the Auxiliary controller.
60	Remote AUX Configured, No AI	The Remote Auxiliary set point control function was configured but no Remote Auxiliary set point analog input was configured.
61	Wrong Product Model Detected	The 505DR application is not loaded onto a Production 505DR hardware platform.
62	Alternate Mode Map Error	Steam Performance Map values not entered correctly for Alternate Modes
63	Cascade Configured, No Al	The Cascade control function was programmed but no Cascade analog input was configured.
64	KW CASC Configured, CASC AI Configured	The Cascade control function was configured to use the kW analog input but an Cascade analog input was configured also. With this configuration, only the kW analog input is used for the Cascade controller.
65	Remote Casc Configured, No Al	The Remote Cascade set point control function was configured but no Remote Cascade set point analog input was configured.

Manual 35	018V3 505X	T Dual Redundant Control System for Steam Turbines
Event ID	Description	Error Meaning
66	Inlet Pres CASC Config, CASC AI Config	The Cascade control function was configured to use the Inlet Pressure analog input but an Cascade analog input was configured also. With this configuration, only the Inlet Pressure analog input is used for the Cascade controller.
67	Exhst Pres CASC Config, CASC Al Config	The Cascade control function was configured to use the Exhaust Pressure analog input but an Cascade analog input was configured also. With this configuration, only the Exhaust Pressure analog input is used for the Cascade controller.
68	Exhaust Pres CASC Config, No Al	The Cascade control function was configured to use the Exhaust Pressure analog input but no AI is configured to be the Exhaust Pressure input
69	Remote Speed Configured, No Al	The remote speed set point control function was configured but no remote speed set point analog input was configured.
70	Feed Forward Programmed, No Al	The Feed Forward function was configured but no Feed Forward analog input is configured.
71	Sync and Sync/Load Share Configured	Both the synchronizing analog input and the sync/load share or load share analog inputs are configured. If the application needs to perform both synchronizing and load sharing with analog signals, only the sync/load sharing analog input needs to be configured.
72	Load Share and Frequency Arm Cnfg	Both the frequency arm/disarm function and the load share control functions are configured. Only one of these modes can be programmed — either freq arm/disarm OR Load Sharing.
73	Generator Application, No Tie Breaker	The unit is configured for a generator application but no utility tie breaker contact input is configured. This is a requirement.
74	Generator Application, No Gen Breaker	The unit is configured for a generator application but no generator breaker contact input is configured. This is a requirement.
75	Idle 1 in Critical Band	Either the Idle speed set point (when using Idle/Rated) or the Idle 1 set point (when using the Automatic Start sequence) is configured within a critical speed avoidance band.
76	Idle 2 in Critical Band	The Idle 2 speed set point (when using the Automatic Start sequence) is configured within a critical speed avoidance band.
77	Idle 3 in Critrical Band	The Idle 3 speed set point (when using the Automatic Start sequence) is configured within a critical speed avoidance band.
78	Min Control Speed < Failed Speed Level	Either the Idle speed set point (when using Idle/Rated) or the Idle 1 set point (when using the Automatic Start sequence) is configured lower than the Failed Speed Level for speed input 1 or 2.
79	Idle 1 Setpoint > Minimum Governor	The Idle Speed setpoint is configured at a higher speed than the minimum governor speed setpoint.
80	Idle 2 Setpoint > Minimum Governor	The Idle Speed setpoint is configured at a higher speed than the minimum governor speed setpoint.
81	Idle 3 Setpoint > Minimum Governor	The Idle Speed setpoint is configured at a higher speed than the minimum governor speed setpoint.
82	Idle 1 > Idle 2	The Idle 1 speed setpoint is configured at a higher speed than the Idle 2 speed setpoint.
83	Idle 2 > Idle 3	The Idle 2 speed setpoint is configured at a higher speed than the Idle 3 speed setpoint.

Manual 35018V3		(T Dual Redundant Control System for Steam Turbines
Event ID	Description	Error Meaning
84	Rate to Idle 2 Error	The Cold Rate to Idle 2 (rpm/second) is configured at a higher rate than the Hot Rate to Idle 2. Or the Warm Rate to Idle 2 (if used) is configured at a higher rate than the Hot Rate to Idle 2.
85	Rate to Idle 3 Error	The Cold Rate to Idle 3 (rpm/second) is configured at a higher rate than the Hot Rate to Idle 3. Or the Warm Rate to Idle 3 (if used) is configured at a higher rate than the Hot Rate to Idle 3.
86	Rate to Rated Error	The Cold Rate to Rated (rpm/second) is configured at a higher rate than the Hot Rate to Rated. Or the Warm Rate to Rated (if used) is configured at a higher rate than the Hot Rate to Rated.
87	Critical Band Rate < Slow Rate	The acceleration rate (rpm/second) through the critical speed avoidance band must be faster than the normal speed set point rate.
88	Critical Speeds Enabled, No Idle	A critical speed avoidance band is configured but neither idle/rated nor auto start sequence is configured. To use the critical speed avoidance logic one of these functions that uses an idle speed must be programmed.
89	Critical Band Below 1st Idle Setpoint	A critical speed avoidance band is configured below either the Idle speed set point (when using Idle/Rated) or the Idle 1 set point (when using the Automatic Start sequence).
90	Critical Band > Minimum Governor	A critical speed avoidance hand is configured higher
91	Critical Band Min > Max	A critical speed avoidance band minimum limit is configured higher than the maximum limit of that band.
92	Minimum Governor > Maximum Governor	The Minimum Governor speed level is configured higher than the Maximum Governor speed level.
93	Rated Speed SP < Min Gov	The Rated speed set point is configured at a lower speed than the Minimum Governor speed set point.
94	Rated Speed SP > Max Gov	The Rated speed set point is configured at a higher speed than the Maximum Governor speed set point.
95	Max Gov > Overspeed Test Limit	The Maximum Governor speed level is configured greater than the Overspeed Test Limit.
96	Overspeed Trip > Overspeed Test SP	Overspeed Test Limit.
97	Overspeed Test Limit > Maximum Speed	The Overspeed Test Limit is configured greater than the Maximum Speed Level for speed input 1 or 2 (if used).
98	Maximum Speed > Probe 1 Freq Range	The maximum speed input is 35000 hertz. This is a limitation of the 505's hardware/speed sensing circuitry. The frequency input of the speed sensor must be less than this value. The gear the speed sensor is mounted on may need to be changed to one with less teeth, this will decrease the frequency seen by the speed probes. The Maximum Speed Level for Speed Input Channel 1, converted to frequency (Hz), is greater than 35000 Hz.

Manual 35	018V3 505X	T Dual Redundant Control System for Steam Turbines
Event ID	Description	Error Meaning
99	Maximum Speed > Probe 2 Freq Range	The maximum speed input is 35000 hertz. This is a limitation of the 505's hardware/speed sensing circuitry. The frequency input of the speed sensor must be less than this value. The gear the speed sensor is mounted on may need to be changed to one with less teeth, this will decrease the frequency seen by the speed probes. The Maximum Speed Level for Speed Input Channel 2, converted to frequency (Hz), is greater than 35000 Hz.
100	Speed Sensor #1 Failed < Freq Range	The failed speed setting for speed input #1 is below the minimum allowed setting. The minimum allowed setting is calculated as follows: (Maximum Speed Level) * (0.0204).
101	Speed Sensor #2 Failed < Freq Range	The failed speed setting for speed input #2 is below the minimum allowed setting. The minimum allowed setting is calculated as follows: (Maximum Speed Level) * (0.0204).
102	No Start Mode Configured	No start mode is selected in the Configure mode. One of the three start modes must be selected in the Configure mode under the Start menu.
103	Remote KW Setpoint Configured, No Al	The Remote kW Setpoint is configured as used but no analog input is configured as a Remote kW Setpoint.
104	Remote Speed and KW Setpoint	Both Remote Speed Setpoint and Remote kW Setpoints are configured as used. Only one of these inputs may be configured.
105	Hot Start greater than Cold Start	The time configured for a Hot Start is greater than the Cold Start. The time remaining after shutdown for a Hot Start must be less than the time for a Cold Start.
106	Hot Reset Level Error	Hot Reset Timer Level is greater than the Maximum Governor speed level or less than the Minimum Governor speed level. The Hot Reset Timer Level must be between Minimum and Maximum Governor.
107	Temperature 1 or 2 used, no Al	A Start Temperature function is configured but no Analog Input is configured as a temperature input.
108	Cascade Speed Limit Error	The Cascade minimum speed limit is configured less than Minimum Governor, the Cascade maximum speed limit is configured greater than Maximum Governor, or the Cascade minimum speed limit is greater than the Cascade maximum speed limit.
109	KW Signal Source Not Selected	A controller has been configured to use a kW input but no Primary or Secondary Signal source has been selected under Operating Parameters.
110	SYNC Signal Source Not Selected	A controller has been configured to use a Synchronization input but no Primary or Secondary Signal source has been selected under Operating Parameters.
111	SYNC LS Signal Source Not Selected	A controller has been configured to use a Synchronization/Load Sharing input but no Primary or Secondary Signal source has been selected under Operating Parameters.
		An analog input for the process value and/or an analog output for the PID demand have not been configured.
112	Isolated Process Control Error	

Event ID	Description	Error Meaning
113	Selected SYNC Source Not Configured	Occurs when a Primary or Secondary Synchronization Signal source has been selected under Operating Parameters but that source is not configured. For example, Primary Synchronization Source is set as 'Analog Input' but no analog input is configured as a Synchronization Input.
114	Selected SYNC LS Source Not Configured	Occurs when a Primary or Secondary Synchronization/Load Sharing Signal source has been selected under Operating Parameters but that source is not configured. For example, Primary Synchronization/Load Sharing Source is set as 'Analog Input' but no analog input is configured as a Synchronization/Load Sharing Input.
115	Duplicate Node ID's on CAN3 Network	Multiple nodes on the CAN3 network have the same Node ID. Node ID's on the same network must be unique.
116	Remote KW SP Selected, Not Genset	The unit is not a generator unit but the Remote kW Setpoint is selected.
117	Generator Load Casc Input. Not Genset.	The unit is not a generator unit but the CASC control is trying to use Generator Load
118	Generator Load Aux Input. Not Genset.	The unit is not a generator unit but the AUX control is trying to use Generator Load
119	Map Entry Values Incorrect	Steam Performance Map values not entered correctly
120	Inlet AI for both CASC and INL Cntrl	The Inlet AI is programmed for both Cascade and Inle Control
121	Exhaust AI for both CASC and EXH Cntrl	The Exhaust AI is programmed for both Cascade and Exhaust Control
122	Extraction Configured, No AI	Configured to use Extraction control but no Ext/Adm Al is programmed
123	Inlet Configured, No AI	Configured to use Inlet control but no Inlet AI is programmed
124	Exhaust Configured, No Al	Configured to use Exhaust control but no Exhaust Al is programmed
125	Remote Extraction Configured, No Al	Programmed to use a remote Extraction setpoint, but no AI for this function is configured
126	Remote Inlet Configured, No Al	Programmed to use a remote Inlet setpoint, but no Al for this function is configured
127	Remote Exhaust Configured, No Al RTCNet Node 21 Analog Input 01	Programmed to use a remote Exhaust setpoint, but n Al for this function is configured
128	Error RTCNet Node 21 Analog Input 01 RTCNet Node 21 Analog Input 02	See "Analog Input 01 Error".
129	Error RTCNet Node 21 Analog Input 02	See "Analog Input 01 Error".
130	Error RTCNet Node 21 Analog Input 04	See "Analog Input 01 Error".
131	Error RTCNet Node 21 Analog Input 05	See "Analog Input 01 Error".
132	Error RTCNet Node 21 Analog Input 06	See "Analog Input 01 Error".
133 134	Error RTCNet Node 21 Analog Input 07	See "Analog Input 01 Error". See "Analog Input 01 Error".
135	Error RTCNet Node 21 Analog Input 08	See "Analog Input 01 Error".
136	Error RTCNet Node 22 Analog Input 01 Error	See "Analog Input 01 Error".

Manual 35018V3

505XT Dual Redundant Control System for Steam Turbines

Manual 35	018V3 505X	T Dual Redundant Control System for Steam Turbines
Event ID	Description	Error Meaning
137	RTCNet Node 22 Analog Input 02 Error	See "Analog Input 01 Error".
138	RTCNet Node 22 Analog Input 03 Error	See "Analog Input 01 Error".
139	RTCNet Node 22 Analog Input 04 Error	See "Analog Input 01 Error".
140	RTCNet Node 22 Analog Input 05 Error	See "Analog Input 01 Error".
141	RTCNet Node 22 Analog Input 06 Error	See "Analog Input 01 Error".
142	RTCNet Node 22 Analog Input 07 Error	See "Analog Input 01 Error".
143	RTCNet Node 22 Analog Input 08 Error	See "Analog Input 01 Error".
144	RTCNet Node 26 Analog Input 01 Error	See "Analog Input 01 Error".
145	RTCNet Node 26 Analog Input 02 Error	See "Analog Input 01 Error".
146	RTCNet Node 26 Analog Input 03 Error	See "Analog Input 01 Error".
147	RTCNet Node 26 Analog Input 04 Error	See "Analog Input 01 Error".
148	RTCNet Node 26 Analog Input 05 Error	See "Analog Input 01 Error".
149	RTCNet Node 26 Analog Input 06 Error	See "Analog Input 01 Error".
150	RTCNet Node 26 Analog Input 07 Error	See "Analog Input 01 Error".
151	RTCNet Node 26 Analog Input 08 Error	See "Analog Input 01 Error".
152	RTCNet Node 24 Boolean Input 01 Error	See "Contact Input 02 Error".
153	RTCNet Node 24 Boolean Input 02 Error	See "Contact Input 02 Error".
154	RTCNet Node 24 Boolean Input 03 Error	See "Contact Input 02 Error".
155	RTCNet Node 24 Boolean Input 04 Error	See "Contact Input 02 Error".
156	RTCNet Node 24 Boolean Input 05 Error	See "Contact Input 02 Error".
157	RTCNet Node 24 Boolean Input 06 Error	See "Contact Input 02 Error".
158	RTCNet Node 24 Boolean Input 07 Error	See "Contact Input 02 Error".
159	RTCNet Node 24 Boolean Input 08 Error	See "Contact Input 02 Error".
160	RTCNet Node 24 Boolean Input 09 Error	See "Contact Input 02 Error".
161	RTCNet Node 24 Boolean Input 10 Error	See "Contact Input 02 Error".
162	RTCNet Node 24 Boolean Input 11 Error	See "Contact Input 02 Error".
163	RTCNet Node 24 Boolean Input 12 Error	See "Contact Input 02 Error".
164	RTCNet Node 24 Boolean Input 13 Error	See "Contact Input 02 Error".
165	RTCNet Node 24 Boolean Input 14 Error	See "Contact Input 02 Error".

Manual 35018V3

505XT Dual Redundant Control System for Steam Turbines

Event ID	Description	Error Meaning
166	RTCNet Node 24 Boolean Input 15 Error	See "Contact Input 02 Error".
167	RTCNet Node 24 Boolean Input 16 Error	See "Contact Input 02 Error".
168	RTCNet Node 25 Relay Error 01	See "Relay 01 Error".
169	RTCNet Node 25 Relay Error 02	See "Relay 01 Error".
170	RTCNet Node 25 Relay Error 03	See "Relay 01 Error".
171	RTCNet Node 25 Relay Error 04	See "Relay 01 Error".
172	RTCNet Node 25 Relay Error 05	See "Relay 01 Error".
173	RTCNet Node 25 Relay Error 06	See "Relay 01 Error".
174	RTCNet Node 25 Relay Error 07	See "Relay 01 Error".
175	RTCNet Node 25 Relay Error 08	See "Relay 01 Error".
176	RTCNet Node 25 Relay Error 09	See "Relay 01 Error".
177	RTCNet Node 25 Relay Error 10	See "Relay 01 Error".
178	RTCNet Node 25 Relay Error 11	See "Relay 01 Error".
179	RTCNet Node 25 Relay Error 12	See "Relay 01 Error".
180	RTCNet Node 25 Relay Error 13	See "Relay 01 Error".
181	RTCNet Node 25 Relay Error 14	See "Relay 01 Error".
182	RTCNet Node 25 Relay Error 15	See "Relay 01 Error".
183	RTCNet Node 25 Relay Error 16	See "Relay 01 Error".
184	RTCNet Node 21 AO 1 Error	See "Analog Output 01 Error".
185	RTCNet Node 21 AO 2 Error	See "Analog Output 01 Error".
186	RTCNet Node 22 AO 1 Error	See "Analog Output 01 Error".
187	RTCNet Node 22 AO 2 Error	See "Analog Output 01 Error".
188	RTCNet Node 26 AO 1 Error	See "Analog Output 01 Error".
189	RTCNet Node 26 AO 2 Error	See "Analog Output 01 Error".
190	RTCNet Node 26 Used Error	CAN#2 Network not enabled, but RTCNode Configured
191	RTCNet Node 21 Used Error	CAN#2 Network not enabled, but RTCNode Configured
192	RTCNet Node 22 Used Error	CAN#2 Network not enabled, but RTCNode Configured
193	Activate CAN1 Digital Drvr Network	Digital Driver Selected but CAN#1 network not enabled.
194	No Drivers on CAN1	CAN#1 Network enabled, but no drivers have been configured.

Manual 35018V3

505XT Dual Redundant Control System for Steam Turbines

Service Menu

The 505DR Service Menu should be adjusted for the application as described in Volume 1 and Volume 2 of this manual, 35018. The same Service Menu options of the simplex 505XT apply to the 505DR redundant application as well.

Some Configuration Menu settings within the AutoStart Sequence ramp rates are made available online for adjustment. These settings are contained within the Configuration Menu. The following Rates are available within the Configuration Menu for online adjustment:

- Rate To Min (rps/s)
- Cold/Hot Rates to Idle 1/2/3 (rpm/s)
- Cold Rate to Rated (rpm/s)
- Hot Rate to Rated (rpm/s)

For redundancy, the following Service options are added:

Alarms

Use RemoteView Audible Alarms?

dflt= NO (Yes/No)

Select YES to enable RemoteView to send an audible alarm and trip sound through your PC speakers for each new event. This provides an audible sound to alert remote operators of new alarm or trip conditions. Once checked, the Sound option in the RemoteView settings window needs to also be enabled.

Controls		Applications	Display	Properties	
Enter IP	+	505XT_DR_GUI	Scale:		0.71
010.045.139.052: FLE			Platform:	Flex500	~
010.045.139.053: FLE 010.045.139.056: VXM			Panel type:	: Simple	~
010.045.139.057: VXM	00059116				
010.045.142.252: 505	_APP2				
			Sound:	() enabled	
Local Mode	Connec	t 🛛 🖑 Edit Tags	▶ Launch	~	✓ Apply

Calibration

Calibration of the Actuator Outputs, Analog Outputs and Analog Inputs should be done following the instructions in Volume 1 of this manual. The SYSCON and BACKUP units will keep all settings in-sync, such that calibration values are automatically set in both units. The I/O channel functions are identical between the Primary and Secondary units such that the same calibration is used in both units.

The Background for all pages will turn orange to indicate that Calibration Mode is enabled.

For Dual Coil actuators, there is a "SD Coil?" checkbox on the channel calibration page. When checked the output current will be driven to 0.00mA. This allows each coil to be stroked independently. For example, to calibrate Coil A, the SD Coil for Coil B should be checked. Once Coil A is calibrated, the SD Coil for Coil A should be checked and removed from Coil B so that it can then be calibrated. The SD Coil option is automatically removed once calibration is exited.

Chapter 17. Redundant Operation

This chapter will detail how the SYSCON and BACKUP units function, the failover performance of a SYSCON transfer, and document any lists (Alarm, Trip, Modbus) that have changed in the redundant version of the 505XT control. For details on turbine operation using the 505DR, please refer to Chapter 5 of Volume 1 in this manual, as the turbine operation is identical to the 505XT simplex model.

Initializing a Redundant System

Before powering up the 505DR units for the first time, it is important to verify that the two units are properly setup for redundancy. The following checks should be made:

- Must use the correct 505DR part numbers identified in Chapter 1 of this manual, 35018V3.
- Must set DIP switches on top of controller to configure one as the Primary unit
- Must set DIP switches on top of controller to configure the other one as the Secondary unit
- Must use a CAT5 or 6 Ethernet cable and make a direct connection between ETHERNET port 4
 of each controller
- Must wire DI 24vdc power of each controller to the COM terminal of Relay #8 of the other controller and wire the NO terminal of Relay #8 back to DI #20 (if using the FTM, verify all harnesses are properly connected)

The determination of the Primary and Secondary units is arbitrary. The designation allows the system to specify each unit individually. In a healthy system, the Primary will bootup as the SYSCON controller.

When power is first applied, the units will begin their boot sequence. When the Operating System has initialized, the GAP control software will be started, and the units will verify that they can successfully communicate to each other over the Ethernet 4 communication link and discrete CrissCross, about 1 minute after power up. Once the IOLOCK LED is off, the units are synchronized and ready to run the system as a redundant pair.

Booting with Ethernet 4 Link or CrissCross Faults

If the system is booted up with an error in the Ethernet 4 link or Discrete CrissCross the units will not be able to correctly communicate. They will initialize the application, but hold the controllers in IOLOCK.

 Ethernet 4 link NOT connected Both the Primary and Secondary units will bootup in the Wait-Run Permissive state. See the "Run Alone" section for more information.

If the Ethernet 4 link is repaired, once the Primary unit has removed the Wait-Run Permissive, a "Reset Backup" command from the DR Redundancy Overview screen will re-sync the units.

 Discrete CrissCross NOT connected The Primary unit will bootup in the Wait-Run Permissive state and the Secondary unit will become Inactive.

If the Discrete CrissCross is repaired, once the Primary unit has removed the Wait-Run Permissive, a "Reset Backup" command from the DR Redundancy Overview screen will re-sync the units.

 Ethernet 4 link and Discrete CrissCross NOT connected Both the Primary and Secondary units will bootup in the Wait-Run Permissive state. See the "Run Alone" section for more information.

If the Ethernet 4 link and Discrete CrissCross are repaired, once the Primary unit has removed the Wait-Run Permissive, a "Reset Backup" command from the DR Redundancy Overview screen will re-sync the units.

Manual 35018V3

Run-Alone Command

When a unit is powered on with a fault on the Ethernet 4 and discrete CrissCross it will initialize into the Wait-Run Perm state, and hold IOLOCK. This state will occur for both the Primary and Secondary units. See the System Diagnostics section for details on the Redundancy Overview GUI screen.

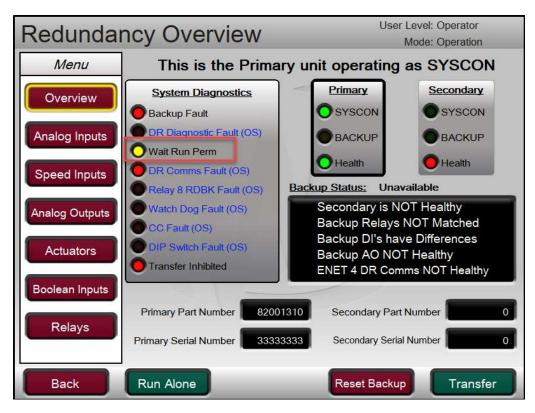


Figure 17-1. Wait Run Permissive Screen

The purpose of the Wait Run Permissive is to prevent a situation in which a unit powers on with the Ethernet 4 or discrete CrissCross communications disconnected and becomes a second SYSCON within the system. By holding IOLOCK and the Wait Run Permissive, the unit waits for the operator to confirm that it is the only controller currently in the system before removing IOLOCK and becoming SYSCON in the system.

The Run Alone command will remove IOLOCK and that unit will become the SYSCON controller. This allows a redundant system to be run from a single controller until the other unit is synced into the running unit, restoring redundancy. See the "Syncing into a Running Unit" section.

The system will have a constant alarm condition and messaging of the failed backup unit and its I/O channels. If the plan is to operate like this for an extended period of time, read the notice below.

NOTICE	If the control is to be in operation for an extended period of time with alarms present, it may be helpful to adjust the "Blink upon new Alarm" actting Checking this has will instruct the control to 'blink'
Operation with alarm conditions	Alarm" setting. Checking this box will instruct the control to 'blink' (flash 1 second on/off) the alarm indication (both LED and summary relay output) whenever a new alarm occurs. When an alarm reset command is entered the blinking will stop. This is found in the Service Menu / Alarms screen.

System Diagnostics

The Redundancy Overview page can be reached from the Home screen of a configured unit or the Configuration Menu of a unit at factory defaults.

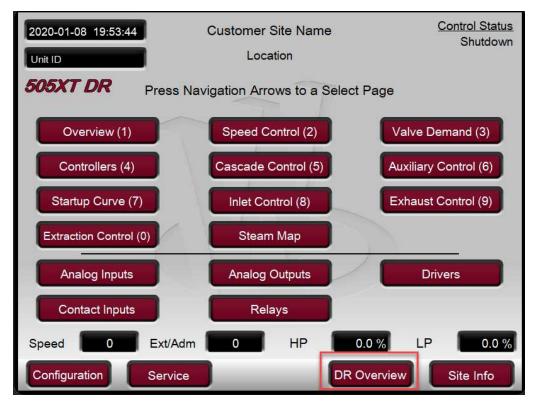


Figure 17-2. Navigating to the DR Overview Screen

The Redundancy Overview page provides system diagnostic indications as well as information about the SYSCON and BACKUP unit status'. The message at the top of the Redundancy Overview screen indicates if the unit being viewed is the Primary or Secondary unit, and whether or not that unit is currently the SYSCON or BACKUP.

Example: "This is the Primary unit operating as SYSCON"

Or

"This is the Secondary unit operating as BACKUP" Or "This is the Primary unit operating as BACKUP" Or "This is the Secondary unit operating as SYSCON"

The LEDs next to the diagnostic message will illuminate when a system error is detected.

Manual 35018V3

505XT Dual Redundant Control System for Steam Turbines

LED	Description
Backup Fault	The health of the backup is bad for any reason.
DR Diagnostic Fault (OS)	An error has been detected during the startup of a Dual-Redundant system. At startup the Primary and Secondary units go through a handshaking process where the Primary unit requests a failover while the Secondary unit waits to become the Syscon. The Secondary unit then requests a failover and the Primary waits to become the Syscon. This process is repeated 3 times. If this test fails for any reason this output is set to TRUE. If this output is TRUE it usually indicates there is a problem with the crisscross connections between the two DR units. Once the output is set TRUE it will remain TRUE until the problem is addressed and the unit's application is restarted.
Wait Run Perm	The DR Diagnostic Fault is TRUE and the unit has not been given a Run Alone command. The I/O lock not allowed to release while in this state. This indicates a DR diagnostic test failed and the unit is waiting for permission to run alone.
DR Comms Fault (OS)	The DR Ethernet communication fails on port 4 between the Primary and Secondary units. This can occur when the Ethernet cable is broken or disconnected, when the DIP switch settings are incorrect (e.g both set as Primary unit), or if the other unit is not running a GAP application. This output is non-latching and always reflects the current status of DR Ethernet communications. This output may go FALSE if the backup unit is re- synced.
Relay 8 RDBK Fault (OS)	An error occurred on the CrissCross Discrete Output #8 (Relay #8) readback circuit. This is only checked at application startup and indicates a hardware failure that is usually caused by an open relay coil. Once detected the output will remain TRUE until the problem is addressed and the unit's application is restarted.
Watch Dog Fault (OS)	This output is TRUE when the microprocessor fails to service the FPGA watchdog within a prescribed time after the MFT (system software tick). This can be caused by unexpected software delays, microprocessor exceptions, or hardware failures. This output will remain set to TRUE until the unit's application is restarted.
CC Fault (OS)	This output is TRUE when a diagnostic test fails that indicates a problem with the crisscross connections. This can happen if the connection between Relay #8 and Discrete Input #20 is miswired, disconnected, or if a hardware failure occurs. This output is non-latching and will only remain TRUE as long as there is a mismatch between both units health status.
Transfer Inhibited	An OS or I/O fault is inhibiting a SYSCON transfer to the BACKUP unit.

Table 17-1. System Diagnostic Descriptions

Manual 35018V3

Redunda	ncy Overview	User Level: Operator Mode: Operation		
Menu	This is the Primary unit operating as SYSCON			
Overview	System Diagnostics	Primary Secondary		
	Backup Fault	OSYSCON OSYSCON		
Analog Inputs	DR Diagnostic Fault (OS)	ВАСКИР ВАСКИР		
	Wait Run Perm	Health		
Speed Inputs	DR Comms Fault (OS)			
	Relay 8 RDBK Fault (OS)	Backup Status: Available		
Analog Outputs	Watch Dog Fault (OS)			
	CC Fault (OS)			
Actuators	DIP Switch Fault (OS)			
	Transfer Inhibited			
Boolean Inputs				
	Primary Part Number 8200	01310 Secondary Part Number 0		
Relays	Primary Serial Number 3333	33333 Secondary Serial Number 20824577		
Back	-	Unsync Backup Transfer		

Figure 17-3. System Diagnostics Screen

The SYSCON Unit

The SYSCON unit is the system controller. It controls all aspects of the turbine control processing its own local I/O. All control states of the SYSCON are communicated to the BACKUP unit over the Ethernet 4 communication link such that the SYSCON keeps the BACKUP unit completely in sync. On a SYSCON transfer, the BACKUP unit becomes the new SYSCON in the exact same state of the previous SYSCON so that control can resume with no disturbance to the system or control state.

The Redundancy Overview screen shows which unit, Primary or Secondary, is currently the SYSCON as well as the state and availability of the BACKUP unit to become SYSCON.

Redundar	ncy Overview	User Level: Operator Mode: Operation	
Menu	This is the Prima	ry unit operating as SYSCON	
Overview	System Diagnostics	Primary Secondary	
	Backup Fault	OSYSCON OSYSCON	
Analog Inputs	DR Diagnostic Fault (OS)	BACKUP BACKUP	
	Wait Run Perm	Health Health	
Speed Inputs	DR Comms Fault (OS)	Backup Status: Available	
	 Relay 8 RDBK Fault (OS) Watch Dog Fault (OS) 	Duckup charas. Available	
Analog Outputs	CC Fault (OS)		
Actuators	DIP Switch Fault (OS)		
	Transfer Inhibited		
Boolean Inputs			
	Primary Part Number 8200	1310 Secondary Part Number 0	
Relays	Primary Serial Number 3333	3333 Secondary Serial Number 20824577	
	I minary Senai Number 100000		
Back		Unsync Backup Transfer	

Figure 17-4. Primary/Secondary SYSCON/BACKUP Indications

The bold border of the Primary and Secondary status boxes indicates which unit is currently being viewed. The LEDs have the following colors and meanings.

Label	Color	Description
SYSCON	Green	The unit is currently operating as the SYSCON
SISCON	Off	The unit is NOT currently operating as the SYSCON
	Green	The unit is currently the BACKUP
BACKUP	Amber	The unit is currently the BACKUP but is inhibited from becoming the SYSCON
	Off	The unit is NOT currently operating as the BACKUP
	Green	The health of the unit is good.
Health	Red	The control application of the unit is stopped or cannot be communicated with.

Table 17-2. Primary/Secondary SYSCON/BACKUP Status Descriptions

Manual 35018V3

On the front panel of the 505DR units, the CPU LED is used to identify the current SYSCON and BACKUP units.

LED	Color	Description
CPU	Solid Green	The unit is the SYSCON
CPU •	Flashing Green	The unit is the BACKUP and is available for a SYSCON transfer
CPU	Flashing Amber	The unit is the BACKUP and is unavailable (inhibited) for a SYSCON transfer

If at any time this CPU LED seems to not be following the above table – there is an LED reset momentary button on the Screen/Key Options page under the Service menu.

Figure 17-5. Front Panel CPU LED SYCON/BACKUP Indication

Ethernet 4 or CrissCross Faults in a Healthy System

When the system is running in a healthy state and a unit-to-unit communication fault occurs, the system will behave as follows:

1. Ethernet 4 link disconnected

Upon detection of an Ethernet 4 communication link fault, the SYSCON will continue to operate as the SYSCON and the BACKUP unit will go to an inactive state.

Upon repair of the Ethernet 4 link, a Reset Backup command will resync the units.

2. CrissCross disconnected

Upon loss of contact input #20 on the SYSCON or the BACKUP, indicating an issue with the CrissCross link, the SYSCON unit will remain the SYSCON and the BACKUP unit will go to an inactive state.

Upon repair of the CrissCross, a Reset Backup command will resync the units.

Manual 35018V3

SYSCON Transfer Conditions

The SYSCON transfer is automatically initiated on internal unit faults (OS Transfers) or on local I/O faults (Application transfers). Critical transfers are those that would trip a system if the transfer to the BACKUP unit did not occur. The following critical conditions will initiate a SYSCON transfer:

- SYSCON 505XT failure (CPU or internal problem) (OS transfer)
- Loss of power to the SYSCON 505(OS transfer)
- Loss of all speed probes to the SYSCON 505 (Application transfer)
- SYSCON 505XT actuator output failure detected (Application transfer)
- CAN Communication fault (Application transfer)

The first two transfers listed are OS transfers. An OS transfer will always attempt to fail-over to the BACKUP unit as long as the Backup Fault system diagnostic indication is FALSE, even if the BACKUP unit is inhibited by I/O faults. Application transfer events will only fail-over to the BACKUP when the BACKUP is not inhibited by an OS or Application inhibit condition (see The BACKUP Unit section).

Non-critical faults will also initiate a SYSCON transfer. Non-critical faults are those that wouldn't cause the 505DR to trip but will lead to reduced operability if left on the current unit. Non-critical faults do not inhibit the BACKUP unit from becoming the SYSCON in the case of a critical fault condition. Non-critical conditions include:

- Analog Input signal failure on the SYSCON (Application transfer)
- Readout Analog Output failure on the SYSCON (Application transfer)
- A manual user command (Application transfer)

If the SYSCON transfers on any fault, and that same fault is also present on the new SYSCON unit, the system will process the fault as described in Volume 1 and Volume 2 of this manual. Because the SYSCON transfers for the fault conditions above, most I/O faults will be annunciated as a fault on the BACKUP unit (after the transfer). This allows the signal to be repaired on the BACKUP unit while the unit is online. The operating system has a 12 second delay after a SYSCON transfer before it will accept any other application or user transfer request.

A user command to transfer SYSCON is also available from the Redundancy Overview screen. This is the only user handle to transfer the SYSCON unit.

SYSCON transfers can occur at any point in operation with no change to the current control state. For example, if a SYSCON transfer occurs during the Automatic Start Sequence, the start sequence logic will continue from the new SYSCON with no interruption to the sequence or control.

SYSCON I/O Signal Monitoring

The SYSCON I/O signals are available on the main 505XT Hardware screens.

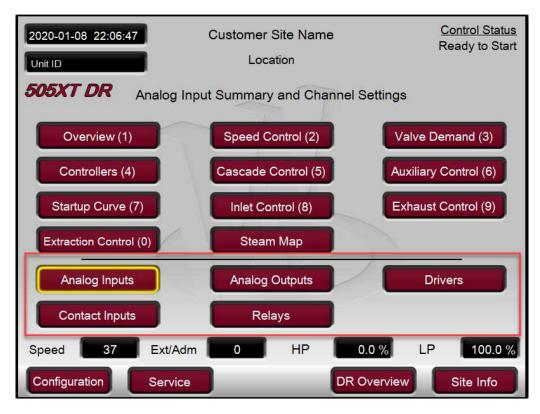


Figure 17-6. SYSCON I/O Monitoring Pages

The signals within the main Hardware screens display the signals that are currently being read and driven from the SYSCON unit. These are the signals that are actively used in turbine control.

The BACKUP Unit

The BACKUP unit is standing by for a SYSCON transfer. The BACKUP unit is continuously kept in-sync with the SYSCON unit such that it can take control of the system on a SYSCON failure with no change in the operating conditions of the controller. The BACKUP unit will be available for transfer if there are no operating system or I/O faults that would inhibit the BACKUP unit.

The BACKUP unit has two categories of conditions that will inhibit it from becoming the SYSCON controller.

- 1. The operating system has detected a Backup Fault (OS inhibit)
 - a. BACKUP application is not running
 - b. Ethernet 4 link disconnected
 - c. CrissCross disconnected
 - d. Primary/Secondary DIP switch settings wrong
- 2. I/O conditions are inhibiting a transfer (Application inhibit)
 - a. Failed Speed probes on BACKUP
 - b. Failed Actuator driver on BACKUP
 - c. Failed Analog Input on BACKUP that has been programmed to inhibit the BACKUP on a failure
 - d. Analog Input signal values on the SYSCON and BACKUP are different
 - e. Relay Output readbacks from SYSCON and BACKUP are different
 - f. Discrete Input signals from SYSCON and BACKUP are different
 - g. CAN Communication link not healthy on BACKUP
 - h. User Inhibited the BACKUP

Manual 35018V3

505XT Dual Redundant Control System for Steam Turbines

If the Backup Fault system diagnostic is TRUE, the BACKUP unit cannot become the SYSCON even on an OS triggered transfer (see The SYSCON Unit section of this manual). If the Backup Fault system diagnostic is FALSE, an OS triggered transfer from the SYSCON will always attempt to make the BACKUP unit the new SYSCON, even if the BACKUP has an I/O condition, or Application inhibit, preventing a transfer.

The Redundancy Overview screen displays the current status of the BACKUP unit and provides a list of the current inhibit conditions if the BACKUP is unavailable.

Redunda	ncy Overview	User Level: Op Mode: Op		
Menu	This is the Primary unit operating as SYSCON			
Overview	System Diagnostics	Primary Sec	ondary	
	Backup Fault	O SYSCON O S	YSCON	
Analog Inputs	DR Diagnostic Fault (OS)	ВАСКИР ОВ	ACKUP	
	Wait Run Perm	O Health	ealth	
Speed Inputs	DR Comms Fault (OS)		com	
Analog Outputs	 Relay 8 RDBK Fault (OS) Watch Dog Fault (OS) CC Fault (OS) 	Backup Status: Available		
Actuators	DIP Switch Fault (OS)			
Boolean Inputs				
	Primary Part Number 8200	1310 Secondary Part Number	0	
Relays	Primary Serial Number 33333	Secondary Serial Number	20824577	
Back		Unsync Backup	Transfer	

Figure 17-7. BACKUP Unit Available Screen

Redundancy Overview		User Level: Configure Mode: Operation	
Menu	This is the Second	dary unit operating as BACKUP)
Overview	System Diagnostics	Primary Secondary	
	Backup Fault	OSYSCON OSYSCON	
Analog Inputs	DR Diagnostic Fault (OS)	ВАСКИР ОВАСКИР	
	Wait Run Perm	Health Health	
Speed Inputs	DR Comms Fault (OS)	Backup Status: Unavailable	٦
Analog Outputs	 Relay 8 RDBK Fault (OS) Watch Dog Fault (OS) CC Fault (OS) 	Operator triggered Backup DI's have Differences	
Actuators	DIP Switch Fault (OS)		
Boolean Inputs	Transfer Inhibited		
Balava	Primary Part Number 8200	1310 Secondary Part Number	0
Relays	Primary Serial Number 3333	3333 Secondary Serial Number 2082457	7
Back		Reset Backup Transfer	

Figure 17-8. BACKUP Unit Inhibited Screen

After an Application inhibit condition is repaired, an alarm Reset command will clear the inhibit condition and the BACKUP will indicate that it is available for a transfer.

Manual 35018V3

BACKUP I/O Signal Monitoring

The BACKUP unit I/O signals can be monitored from the Redundancy Overview screen using the navigation Menu on the right hand side of the screen.

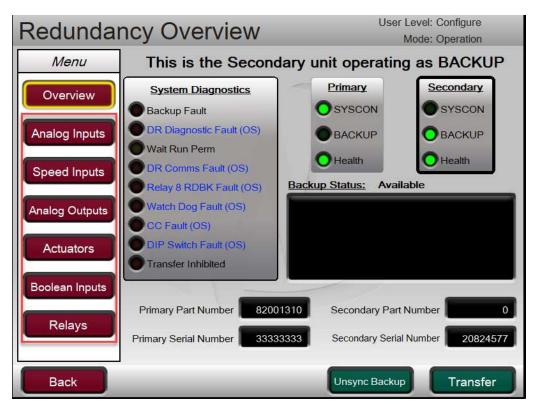
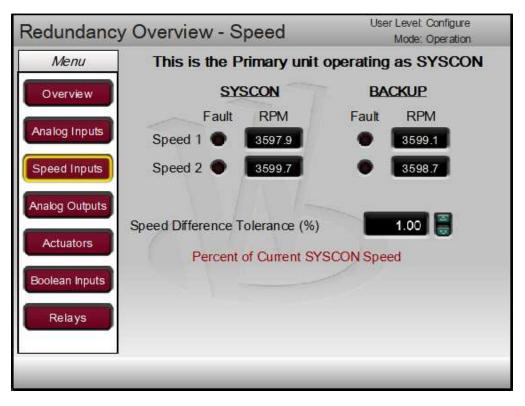


Figure 17-9. BACKUP I/O Monitoring Menu

The Analog Input screen from this menu shows the raw mA signals being read from both the SYSCON and BACKUP units. A fault indication is given for both the SYSCON and BACKUP values if the mA signal is <2mA or >22mA. If there is a difference (2mA window) between the SYSCON and BACKUP mA signal on a channel, an alarm will be annunciated and the BACKUP will be inhibited.

This screen also has a toggle button that can be used to control if a transfer of SYSCON will be triggered upon an AI fault (XFER on FLT) or if a fault on an AI signal will NOT initiate a transfer of SYSCON (Inhibit XFER)


Manual 35018V3

505XT Dual Redundant Control System for Steam Turbines

14	This is the			Node: Operation
Menu		e Primary unit SYSCON	operating a	
Overview	Fa	ult mA	Fault	mA
Analog Inputs	AI 01	4.000	• •	6.000
	AI 02 🥊	4.000	• 1	4.000
Speed Inputs	AI 03 🧲	8.814	• 1	8.814
Analog Outputs	AI 04 🧲	4.000	• 1	4.000
Actuators	AI 05	4.000	•	4.000
	AI 06 🧲	4.000	. 1	4.000
Boolean Inputs	AI 07	4.000	• 1	4.000
Relays	AI 08	4.000	• 1	4.000

Figure 17-10 BACKUP Analog Inputs Screen

The Speed Inputs screen shows the RPM signals being read from Both the SYSCON and BACKUP units. A fault indication is given for both the SYSCON and BACKUP. If there is a difference (default of 1.0% of the current speed) between the SYSCON and BACKUP signals on a channel, an alarm will be annunciated. If only 1 speed signal is programmed, then this alarm will also make the BACKUP unit unavailable.

Manual 35018V3

505XT Dual Redundant Control System for Steam Turbines

The Analog Output screen shows the raw mA output signals from the SYSCON and BACKUP, as well as the total mA being sent per channel. For each unit, the mA demand (requested amount) and the mA readback (at the negative terminal) are shown. A fault indication is given for both the SYSCON and BACKUP circuits.

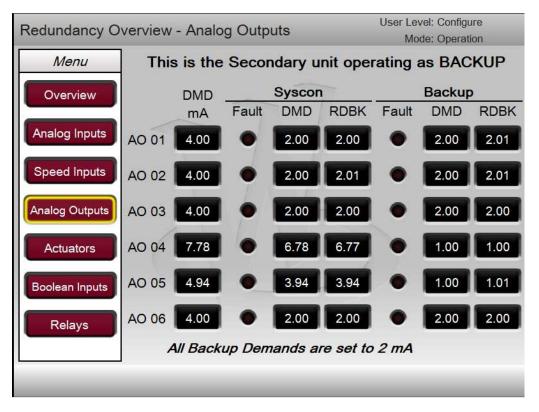


Figure 17-12. BACKUP Analog Outputs Screen

The Actuator Output screen shows the raw mA output signals from the SYSCON and BACKUP, as well as the total mA being sent per channel. For each unit, the mA demand (requested amount) and the mA source (at the positive terminal) are shown. A fault indication is given for both the SYSCON and BACKUP circuits.

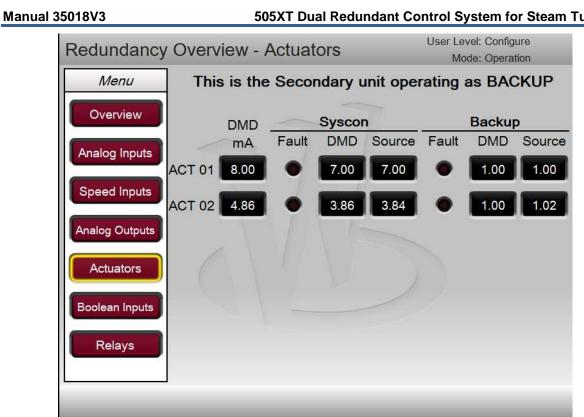


Figure 17-13. BACKUP Actuator Outputs Screen

The Boolean Inputs screen shows the input states for all channels on the SYSCON and BACKUP units. If a difference between the SYSCON and BACKUP channel exists, the control will always follow what the SYSCON signal level indication is indicating. If a difference exists, an alarm will be annunciated and the BACKUP will be inhibited. In rare scenarios, it might be necessary to temporarily override the transfer inhibit on a difference, which can be done using the softkey Toggle Button "OVRD XFR INH", allowing the SYSCON to transfer units.

Manual 35018V3

505XT Dual Redundant Control System for Steam Turbines

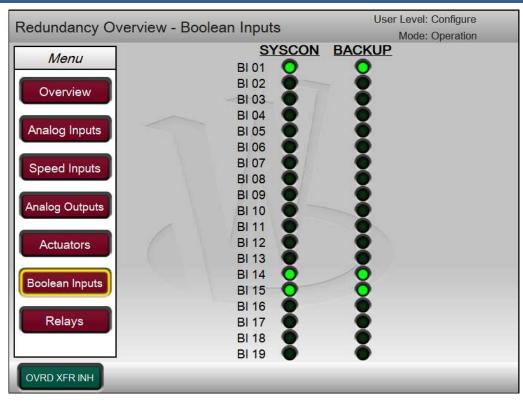
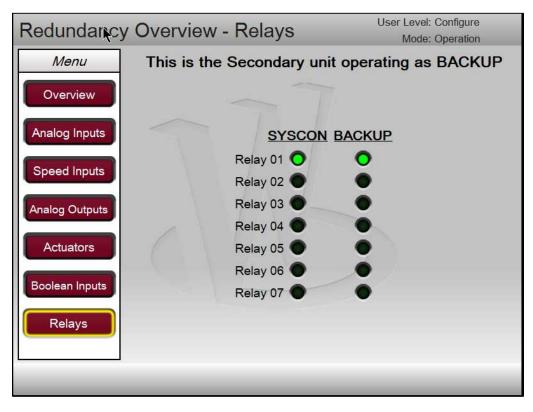



Figure 17-14. BACKUP Boolean Inputs Screen

The Relay Output screen shows the output states for all channels on the SYSCON and BACKUP units. If the internal 505DR readback state of the relay is different between a SYSCON and BACKUP channel, an alarm will be annunciated and the BACKUP will be inhibited.

Manual 35018V3

505XT Dual Redundant Control System for Steam Turbines

Reset Backup Command

The "Reset Backup" command becomes available from the Redundancy Overview screen when the BACKUP unit is inhibited. This command has two functions:

1. When the BACKUP is Inactive, this command will restart the BACKUP unit's control application, and resync the BACKUP unit.

For example, in a healthy system, if the Ethernet 4 link gets disconnected, the BACKUP unit will become Inactive. The SYSCON can then reset the BACKUP unit application once the Ethernet 4 link is repaired to sync the BACKUP unit back in.

2. When the BACKUP is online, this command will stop the BACKUP application for 20s, then restart the application and re-sync the BACKUP unit back in.

This provides a method for shutting down and disconnecting the BACKUP unit for maintenance reasons. For example, if the BACKUP unit needed to be replaced, the Reset Backup command would take the BACKUP unit offline for 20s, allowing a technician to power the unit off, and take it out of service. See the Online Unit Repairs section of this manual.

The Reset Backup command is communicated over the Ethernet 4 link. The Reset Backup command can be issued from either the SYSCON or BACKUP unit when both units are online. If the BACKUP is offline, the SYSCON must issue the Reset Backup command with a healthy Ethernet 4 link in order to resync the BACKUP unit.

Operational Commands and Settings

Operational Commands

All commands via communication links (front panel GUI, RemoteView, or Modbus) can be issued to either the SYSCON unit or the BACKUP unit. The operating system will ensure that the commands are processed by the SYSCON unit and that the control state is passed to the BACKUP unit to keep it in sync and available for transfer. The system can be operated from either the SYSCON or BACKUP unit in a healthy system.

Discrete Input commands and system signals (breaker signals etc) are only processed by the SYSCON unit. Therefore, the system design requires that all discrete inputs are wired to both the Primary and Secondary units so that the commands are seen by both units simultaneously. If a difference between a SYSCON and BACKUP discrete input channel will be annunciated as an alarm and the BACKUP unit will be inhibited until the signals are matched.

All command functions are described in Volume 1 and 2 of this manual.

Settings Adjustments

When Configuration, Service, or Runtime settings are adjusted in either the SYSCON or BACKUP the two units will automatically synchronize the settings changes so that both units contain identical settings. When a Save Settings command is issued, both units will save settings to non-volatile memory. It is only necessary to configure or make settings updates in one of the units. The operating system will automatically update both systems to keep them in sync.

Settings files (*.tc files) can be loaded to either the SYSCON or BACKUP unit and the settings will be automatically synchronized to both units.

Emergency Stop Button

When the EMERGENCY STOP button on the front panel is pressed from either the SYSCON or BACKUP, both units will trip.

Manual 35018V3

Online Unit Repairs

When used in a redundant configuration, the 505DR is designed such that I/O signals can be disconnected from the BACKUP unit while the healthy 505XT continues to control and operate the turbine on-online. The system is designed so that either unit can be removed and replaced while the other healthy 505XT continues to control and operate the turbine on-line.

Repairs to I/O Signals

When an Analog Input, Analog Output or Actuator Output signal fails, the system is designed to transfer the SYSCON in order to continue to run on a healthy signal, if it is available on the BACKUP unit. The signal can then be repaired on the BACKUP unit allowing the new SYSCON to control and operate the turbine. Once the failure is repaired, a Reset command will restore the fault and make the BACKUP unit available for transfer.

When a signal fails in the field, it is faulted on both the SYSCON and BACKUP. The signal should be repaired in the field and a Reset command will restore the signal to both control units.

When making repairs to IO signals, it is important to not disturb the SYSCON unit IO. The BACKUP unit can be manually inhibited to prevent transfers to that unit while repairs are being made.

Unit Replacement Procedure

1. Transfer turbine control to desired unit.

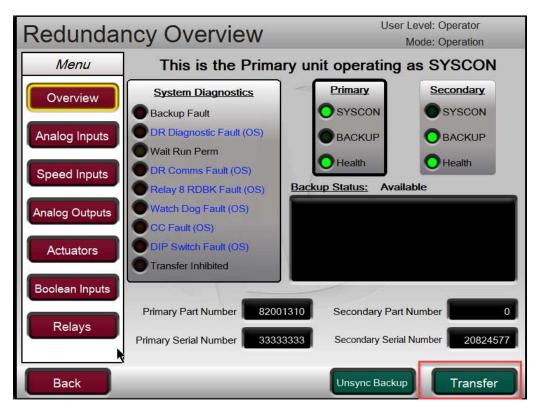


Figure 17-16. User SYSCON Transfer Command

2. Unsync the BACKUP unit from the Redundancy Overview page

Manual 35018V3

Redunda	ncy Overview	User Level: Op Mode: Op	
Menu	This is the Prima	ry unit operating as SY	SCON
Overview	System Diagnostics	Primary Sec	ondary
	Backup Fault	O SYSCON	YSCON
Analog Inputs	DR Diagnostic Fault (OS)		ACKUP
	Wait Run Perm	O Health	ealth
Speed Inputs	OR Comms Fault (OS)		calut
	Relay 8 RDBK Fault (OS)	Backup Status: Available	
Analog Outputs	Watch Dog Fault (OS)		
	CC Fault (OS)		
Actuators	 DIP Switch Fault (OS) Transfer Inhibited 		
Boolean Inputs			_
Relays	Primary Part Number 8200	1310 Secondary Part Number	0
Relays	Primary Serial Number 3333	3333 Secondary Serial Number	20824577
L			
Back		Unsync Backup	Transfer

Figure 17-17. User Unsync Backup Command

3. Issue a Reset Backup command. This will take the BACKUP unit offline for 20 seconds.

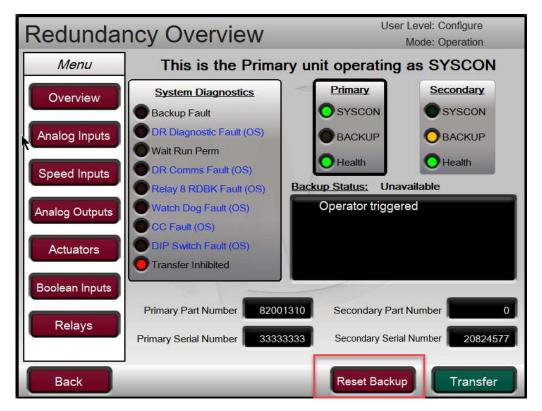


Figure 17-18. User Reset Backup Command

- 4. Remove power to unit being replaced.
- 5. Carefully remove all plug-in terminal blocks and Ethernet connections from 505.

Manual 35018V3

6. Replace respective 505DR with another unit, making sure that it has the same DIP switch setting as the previous unit.

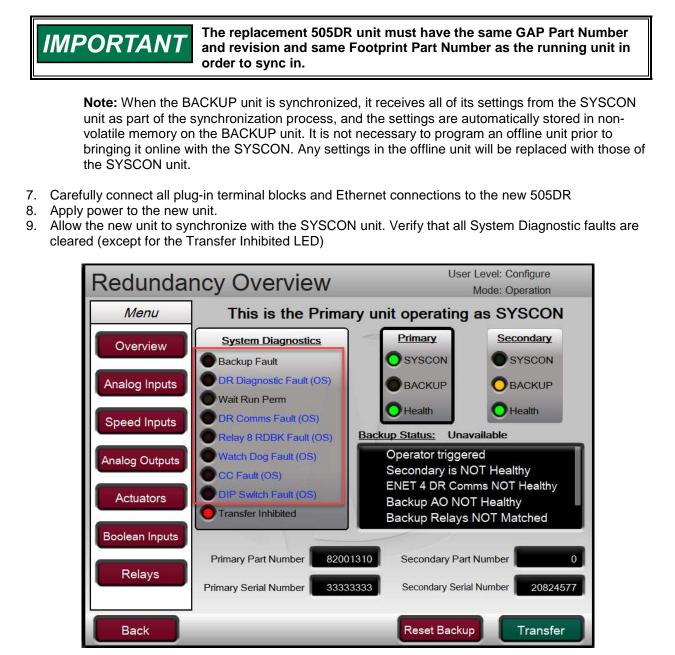


Figure 17-19. System Diagnostic Faults Cleared

10. Issue a 'Reset' command. At this point the new 505DR will reset related faults or alarms and if they clear, will enter BACKUP available mode and output a trickle current (equal to half of the minimum actuator current) to verify actuator circuit continuity.

Manual 35018V3

Redunda	ncy Overview	User Level: Configure Mode: Operation	
Menu	This is the Prima	ary unit operating as SYSCON	
Overview	System Diagnostics	Primary Secondary	
	Backup Fault	OSYSCON OSYSCON	
Analog Inputs	DR Diagnostic Fault (OS)	ВАСКИР ВАСКИР	
	Wait Run Perm	Health Health	
Speed Inputs	DR Comms Fault (OS)		
Analog Outputs	 Relay 8 RDBK Fault (OS) Watch Dog Fault (OS) CC Fault (OS) 	Backup Status: Available	
Actuators	 DIP Switch Fault (OS) Transfer Inhibited 		
Boolean Inputs	Primary Part Number 8200	01310 Secondary Part Number	0
Relays	Primary Serial Number 3333	33333 Secondary Serial Number 2082457	7
Back		Unsync Backup Transfer	

Figure 17-20. BACKUP Available

11. Transfer control to new unit if desired.

Synchronizing an Offline Unit to the SYSCON

When a unit is running as SYSCON and the BACKUP unit is offline, the following steps will sync in the offline unit.

- 1. Verify that the Ethernet 4 and discrete CrissCross are connected between the running unit and offline unit
- 2. Verify that all IO signals are properly connected to the offline unit
- 3. Power on offline unit
- 4. When the offline unit is initializing, it will look for the SYSCON unit on the communication links and receive the current operating state of the system from the SYSCON, and be brought online as the BACKUP unit.
- 5. Issue a RESET command and verify that all BACKUP faults are cleared and that the BACKUP unit is Available from the Redundancy Overview page.

The replacement 505DR unit must have the same GAP Part Number and revision and same Footprint Part Number as the running unit in order to sync in.

When the BACKUP unit is synchronized, it receives all of its settings from the SYSCON unit as part of the synchronization process, and the settings are automatically stored in non-volatile memory on the BACKUP unit. It is not necessary to program an offline unit prior to bringing it online with the SYSCON. Any settings in the offline unit will be replaced with those of the SYSCON unit.

RemoteView Connections

The installation file is included on the system documentation CD. The name of the installation file will include the revision and be similar to 9927-2344_F_RemoteView.exe. The file name may vary slightly as future revisions are released. Execute this file to begin the installation process. For Rev F and later, RemoteView will support Redundant connections to the 505DR.

Manual 35018V3

505XT Dual Redundant Control System for Steam Turbines

For installation, configuration, and usage instructions, please see the RemoteView Appendix in Volume 2 of this manual.

The Connection dialog box has been updated to support redundant connections. This dialog will appear and give the user an option to modify the IP for the active connection, enter the control IP and if a redundant connection is desired, click the Enable Failover checkbox and add a redundant IP to use. In the case of the 505DR, use one IP address from the Primary unit and one IP address from the Secondary unit, then click apply.

Device ID	IP to Use	Redundant IP
MyDev	010.045.139.057	10.45.139.58

Figure 17-21. Session connections dialog box

This dialog will appear and give the user an option to modify the IP for the active connection, enter the control IP and if a redundant connection is desired, click the Enable Failover checkbox and add a redundant IP to use.

Failover Performance

When a SYSCON failover occurs, Actuator and Analog output currents will experience a small bump as the new SYSCON increases its output to match the last demand level. A transfer of SYSCON at 20mA output will dip around 6mA and recover back to full current within 80ms, as seen at the final driver.

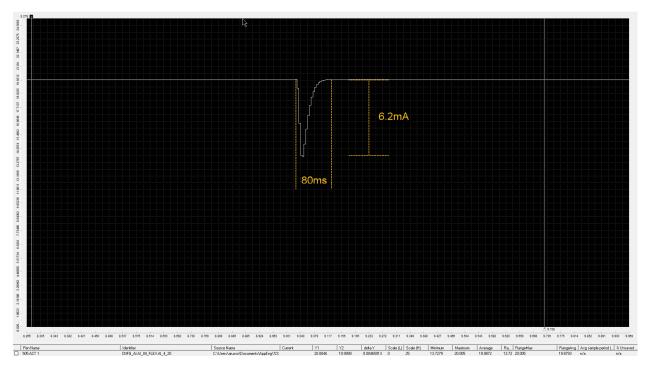


Figure 17-22. Actuator Output Failover Performance

When a Digital Driver (CAN RTCNet Node 26 or SPC) is used, the SYSCON transfer is bumpless as seen by the final driver.

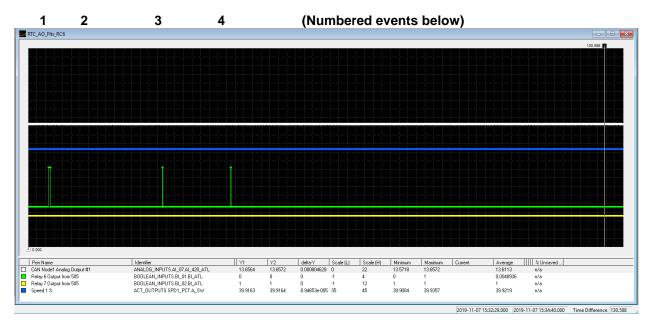


Figure 17-23. RTCNet Node 26 Analog Output Performance

Manual 35018V3

505XT Dual Redundant Control System for Steam Turbines

In above trend graph following events occurred -

- 1 User XFER
- 2 Fail CAN2 on Backup (no XFER) then Reset
- 3 Fail CAN2 on Syscon (XFER) then Reset
- 4 Fail Power on Syscon (XFER) reset after Reboot

Constant output of 13.65 mA to valve – constant speed of 3992 through each of these 4 events.

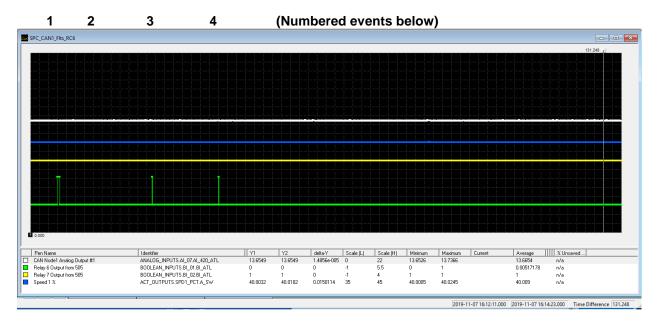


Figure 17-24. SPC Analog Output Performance

In above trend graph following events occurred -

- 1 User XFER
- 2 Fail CAN1 on Backup (no XFER) then Reset
- 3 Fail CAN1 on Syscon (XFER) then Reset
- 4 Fail Power on Syscon (XFER) reset after Reboot

Constant output of 13.65 mA to valve – constant speed of 4000 through each of these 4 events.

Alarms

When using the 505DR, the alarm list (Table 5-1) in Volume 1 of this manual is replaced with the following list.

ALARM Number	Description
ALM_001	Speed Probe #1 Failed
ALM_002	Speed Probe #2 Failed
ALM_003	Remote Spd Disabled PV Failed
ALM_004	Sync Input Failed
ALM_005	Load Share Input Failed
ALM_006	KW Load Droop Disabled PV Failed
ALM_007	Cascade Control Disabled PV Failed
ALM_008	Remote Casc Input Failed
ALM_009	AUX Control Disabled PV Failed
ALM_010	Remote AUX Input Failed
ALM_011	Redundant LP A FDBK Failed

Table 17-4. Alarm Messages

Manual 35018V3		505XT Dual Redundant Control System for Steam 1
	ALARM Number	Description
	ALM_012	Redundant LP B FDBK Failed
	ALM_013	Inlet Control Disabled PV Failed
	ALM_014	Redundant HP A FDBK Failed
	 ALM_015	Redundant HP B FDBK Failed
	 ALM_016	Feed-forward input failed
	 ALM_017	Remote Droop Fault
	 ALM_018	Remote KW Setpoint Failed
	 ALM_019	Exhaust Control Disabled PV Failed
	ALM_020	Temp for Hot/Cold Starts Failed
	ALM_021	HP Valve Feedback Failed
	ALM_022	HP2 Valve Feedback Failed
	ALM_023	Isolated PID PV Failed
	ALM_024	Rem SP Isolated PID Failed
	ALM_025	Customer Input #1 Failed
	ALM_026	Customer Input #2 Failed
	ALM_027	Customer Input #3 Failed
	ALM_028	Start Temperature 1 Failed
	ALM_029	Start Temperature 2 Failed
	ALM_030	Ext/Adm Control Disabled PV Failed
	ALM_031	Remote Extr/Adm SP Input Failed
	ALM_032	External alarm # 1
	ALM_033	External alarm # 2
	ALM_034	External alarm # 3
	ALM_035	External alarm # 4
	ALM_036	External alarm # 5
	ALM 037	External alarm # 6
	ALM_038	External alarm # 7
	ALM_039	External alarm # 8
	ALM_040	External alarm # 9
	ALM_040	Redundant HP A Failed from BI
	ALM_042	Redundant HP B Failed from BI
	ALM_043	HP Actuator Fault
	ALM_044	HP2 Actuator Fault
	ALM_045	Start Perm Not Closed
	ALM_046	Mod Comm Link #1 Failed
	ALM_047	Mod Comm Link #2 Failed
	ALM_048	Mod Comm Link #3 Failed
	ALM_049	AO_01 Readback Fault
	ALM_050	AO_02 Readback Fault
	ALM_051	AO_03 Readback Fault
	ALM_052	AO 04 Readback Fault
	ALM_053	AO_05 Readback Fault
	ALM_054	AO_06 Readback Fault
	ALM_055	Chassis Summary Alarm

Manual 35018V3

ALARM Number	Description
ALM_056	Turbine Tripped
ALM_057	Overspeed
ALM_058	Overspeed Test Enabled
ALM_059	TIE Breaker Opened
ALM_060	GEN Breaker Opened
ALM_061	Tie Open / No Auxiliary
ALM_062	Gen Open / No Auxiliary
ALM_063	Tie Open / No Cascade
ALM_064	Gen Open / No Cascade
ALM_065	Tie Open / No Remote
ALM_066	Gen Open / No Remote
ALM_067	Stuck In Critical Band
ALM_068	505 Display Comm Fault
 ALM_069	HP Valve Pos Fdbk Diff ALM
 ALM_070	HP2 Valve Pos Fdbk Diff ALM
ALM_071	Limiter in Control
ALM_072	Inlet Steam Pressure LvI1 ALM
ALM_073	Inlet Steam Pressure Lvl2 ALM
ALM_074	Exh Steam Pressure Lvl1 ALM
ALM_075	Exh Steam Pressure Lvl2 ALM
ALM_076	Selected PV 1 Level 1 ALM
ALM_077	Selected PV 1 Level 2 ALM
ALM_078	Selected PV 2 Level 1 ALM
ALM_079	Selected PV 2 Level 2 ALM
ALM_080	Selected PV 3 Level 1 ALM
ALM_081	Selected PV 3 Level 2 ALM
ALM_082	Tunable Alarm
ALM_083	Tie Open / No Inlet
ALM_084	Gen Open / No Inlet
ALM_085	Actuator 1 Readout Fault
ALM_086	Actuator 2 Readout Fault
ALM_087	CAN1_DVP1 Summary ALM
ALM_088	CAN1_DVP2 Summary ALM
ALM_089	ALM_089
ALM_090	HP2 Actuator Fault (DVP1 or 2)
ALM_091	Comm Link to DSLC2 Failed
ALM_092	KW Load AI Failed
ALM_093	Turbine Maintenance Interval Alm
ALM_094	Start Temperature #1 Override Active
ALM_095	Start Temperature #2 Override Active
ALM_096	Comm Link to EasyGen Failed
ALM_097	Comm Link to LS-5 Failed
ALM_098	Comm Link to MFR300 Failed
ALM_099	Comm Link to HiProtec Failed

Manual 35018V3	505XT Dual Redundant Control System for Steam Tur
ALARM Number	Description
ALM_100	MPU1 Failed Open Wire Test
	MPU2 Failed Open Wire Test
	Internal HW Simulation Enabled
 ALM_103	Pressure Compensation Curve Error
ALM_104	Actuator Linearization Curve Error
	Remote Manual P Demand Input Failed
 ALM_106	Remote Exhaust SP Input Failed
	Remote Inlet Pressure SP Input Failed
 ALM_108	LP Position Feedback Input Failed
 ALM_109	Reverse Rotation Detected
	LinkNet Summary Alarm
ALM_111	Tie Open / No Extraction
 ALM_112	Gen Open / No Extraction
ALM_113	Tie Open / No Exhuast
ALM_114	Gen Open / No Exhaust
ALM_115	LP Actuator Fault
ALM_116	LP Actuator Fault ALM (DVP1 or 2)
ALM_117	Speed Below Min - No Extraction
ALM_118	LP Lmtr->No Spd Cntl->Ratio Lmtr Dsbl
ALM_119	External alarm # 10
ALM_120	External alarm # 11
ALM_121	External alarm # 12
ALM_122	External alarm # 13
ALM_123	External alarm # 14
ALM_124	External alarm # 15
ALM 125	Alternate Mode Map Error
ALM_126	LP Valve Pos Fdbk Diff ALM
ALM_127	LP Linearization Alarm
ALM_128	Redundant LP A Failed from BI
ALM_129	Redundant LP B Failed from BI
ALM_130	LP2 Actuator Fault
ALM_131	spare_131
ALM_132	spare_132
ALM_133	spare_133
ALM_134	spare_134
ALM_135	spare_135
ALM_136	spare_136
ALM_137	Backup Unavailable
ALM_138	Seconday Chassis Fault
ALM_139	Backup Speed 1 Fault
ALM_140	Backup Speed 2 Fault
ALM_141	Backup Al 1 Fault
	Backup Al 2 Fault
ALM_142	

Manual	35018V3
--------	---------

ALARM Number	Description
ALM_144	Backup AI 4 Fault
ALM_145	Backup AI 5 Fault
ALM_146	Backup AI 6 Fault
ALM_147	Backup AI 7 Fault
ALM_148	Backup AI 8 Fault
ALM_149	spare_149
ALM_150	spare_150
ALM_151	spare_151
ALM_152	spare_152
ALM_153	spare_153
ALM_154	spare_154
ALM_155	spare_155
ALM_156	spare_156
ALM_157	Diff Alarm Redun Speed SP
ALM_158	Diff Alarm Redun Gen Load Input
ALM_159	Diff Alarm Redun Casc Inputs
ALM_160	Diff Alarm Redun AUX Inputs
ALM_161	Diff Alarm Redun Inlet Inputs
ALM_162	Diff Alarm Redun Exhaust Inputs
ALM_163	Diff Alarm Redun Ext/Adm Inputs
ALM_164	Remote Speed SP Signal #1 Fault
ALM_165	Remote Speed SP Signal #2 Fault
ALM_166	Generator Load Signal #1 Fault
ALM_167	Generator Load Signal #2 Fault
ALM_168	Cascade Input Signal #1 Fault
ALM_169	Cascade Input Signal #2 Fault
ALM_170	Auxliary Input Signal #1 Fault
ALM_171	Auxiliary Input Signal #2 Fault
ALM_172	Inlet Input Signal #1 Fault
ALM_173	Inlet Input Signal #2 Fault
ALM_174	Exhaust Input Signal #1 Fault
ALM_175	Exhaust Input Signal #2 Fault
ALM_176	Ext/Adm Input Signal #1 Fault
ALM_177	Ext/Adm Input Signal #2 Fault
ALM_178	Analog Output 01 Backup Fault
ALM_179	Analog Output 02 Backup Fault
ALM_180	Analog Output 03 Backup Fault
ALM_181	Analog Output 04 Backup Fault
ALM_182	Analog Output 05 Backup Fault
ALM_183	Analog Output 06 Backup Fault
ALM_184	Actuator Output 01 Backup Fault
ALM_185	Actuator Output 02 Backup Fault
ALM_186	SPC 11 Driver Summary Fault
ALM_187	SPC 12 Driver Summary Fault

Manual 35018V3	505XT Dual Redundant Control System for Steam Turbines
ALARM Number	Description
ALM_188	SPC 13 Driver Summary Fault
ALM_189	SPC 14 Driver Summary Fault
ALM_190	DVP 15 Driver Summary Fault
	DVP 16 Driver Summary Fault
ALM_192	HP Driver Fault
 ALM_193	HP Coil A Fault
ALM_194	HP Coil B Fault
ALM_195	HP Actuator A Fault
ALM_196	HP Actuator B Fault
ALM_197	LP Driver Fault
ALM_198	LP Coil A Fault
	LP Coil B Fault
ALM_200	LP Actuator A Fault
ALM_201	LP Actuator B Fault
ALM_202	Speed 1 and Speed 2 Deviation
ALM_203	Backup Unit CAN1 Fault
ALM_204	CAN1 Digital Driver Network Fault
ALM_205	Spare 205
ALM_206	Spare 206
ALM_207	Spare 207
_ALM_208	Spare 208
ALM_209	Spare 209
_ALM_210	Spare 210
_ALM_211	Spare 211
ALM_212	Spare 212
ALM_213	Spare 213
ALM_214	Spare 214
ALM_215	Spare 215
_ALM_216	Spare 216
_ALM_217	Spare 217
ALM_218	Spare 218
ALM_219	Spare 219
ALM_220	Spare 220
ALM_221	Spare 221
ALM_222	Spare 222
ALM_223	Spare 223
ALM_224	Spare 224

Manual 35018V3

505XT Dual Redundant Control System for Steam Turbines

When using the 505DR, if RTCnet nodes (distributed I/O) are used then this alarm list will apply. It details the summary of alarm events that come from the CAN2 network.

Table 17-5. Distributed I/O Alarm Messages

ALARM Number	Description
ALM_001	RTCNet Node 21 Comm Fault
ALM_002	RTCNet Node 22 Comm Fault
ALM_003	RTCNet Node 23 Comm Fault
ALM_004	RTCNet Node 24 Comm Fault
ALM_005	RTCNet Node 25 Comm Fault
ALM_006	RTCNet Node 26 Comm Fault
ALM_007	RTCNet Node 21 Failed
ALM_008	RTCNet Node 22 Failed
ALM_009	RTCNet Node 23 Failed
ALM_010	RTCNet Node 24 Failed
ALM_011	RTCNet Node 25 Failed
ALM_012	RTCNet Node 26 Failed
ALM_013	Node 21 AI_1 Fault
ALM_014	Node 21 AI_2 Fault
ALM_015	Node 21 AI_3 Fault
ALM_016	Node 21 AI_4 Fault
ALM_017	Node 21 AI_5 Fault
ALM_018	Node 21 AI_6 Fault
ALM_019	Node 21 AI_7 Fault
ALM_020	Node 21 AI_8 Fault
ALM_021	Node 21 AO_1 Fault
ALM_022	Node 21 AO_2 Fault
ALM_023	Node 22 AI_1 Fault
ALM_024	Node 22 AI_2 Fault
ALM_025	Node 22 AI_3 Fault
ALM_026	Node 22 AI_4 Fault
ALM_027	Node 22 AI_5 Fault
ALM_028	Node 22 AI_6 Fault
ALM_029	Node 22 AI_7 Fault
ALM_030	Node 22 AI_8 Fault
ALM_031	Node 22 AO_1 Fault
ALM_032	Node 22 AO_2 Fault
ALM_033	Node 23 RTD_1 Fault
ALM_034	Node 23 RTD_2 Fault
ALM_035	Node 23 RTD_3 Fault
ALM_036	Node 23 RTD_4 Fault
ALM_037	Node 23 RTD_5 Fault
ALM_038	Node 23 RTD_6 Fault
ALM_039	Node 23 RTD_7 Fault
ALM_040	Node 23 RTD_8 Fault

Manual 35018V3

ALARM Number	Description
ALM_041	Node 21 AI 1 Alarm Level 1
ALM_042	Node 21 AI 1 Alarm Level 2
ALM_043	Node 21 AI 2 Alarm Level 1
ALM_044	Node 21 AI 2 Alarm Level 2
ALM_045	Node 21 AI 3 Alarm Level 1
ALM_046	Node 21 AI 3 Alarm Level 2
ALM_047	Node 21 AI 4 Alarm Level 1
ALM_048	Node 21 AI 4 Alarm Level 2
ALM_049	Node 21 AI 5 Alarm Level 1
ALM_050	Node 21 AI 5 Alarm Level 2
ALM_051	Node 21 AI 6 Alarm Level 1
ALM_052	Node 21 AI 6 Alarm Level 2
ALM_053	Node 21 AI 7 Alarm Level 1
ALM_054	Node 21 AI 7 Alarm Level 2
ALM_055	Node 21 AI 8 Alarm Level 1
ALM_056	Node 21 AI 8 Alarm Level 2
ALM_057	Node 22 AI 1 Alarm Level 1
ALM_058	Node 22 AI 1 Alarm Level 2
ALM_059	Node 22 AI 2 Alarm Level 1
ALM_060	Node 22 AI 2 Alarm Level 2
ALM_061	Node 22 AI 3 Alarm Level 1
ALM_062	Node 22 AI 3 Alarm Level 2
ALM_063	Node 22 AI 4 Alarm Level 1
ALM_064	Node 22 AI 4 Alarm Level 2
ALM_065	Node 22 AI 5 Alarm Level 1
ALM_066	Node 22 AI 5 Alarm Level 2
ALM_067	Node 22 AI 6 Alarm Level 1
ALM_068	Node 22 AI 6 Alarm Level 2
ALM_069	Node 22 AI 7 Alarm Level 1
ALM_070	Node 22 AI 7 Alarm Level 2
ALM_071	Node 22 AI 8 Alarm Level 1
ALM_072	Node 22 AI 8 Alarm Level 2
ALM_073	Node 23 RTD 1 Alarm Level 1
ALM_074	Node 23 RTD 1 Alarm Level 2
ALM_075	Node 23 RTD 2 Alarm Level 1
ALM_076	Node 23 RTD 2 Alarm Level 2
ALM_077	Node 23 RTD 3 Alarm Level 1
ALM_078	Node 23 RTD 3 Alarm Level 2
ALM_079	Node 23 RTD 4 Alarm Level 1
ALM_080	Node 23 RTD 4 Alarm Level 2
ALM_081	Node 23 RTD 5 Alarm Level 1
ALM_082	Node 23 RTD 5 Alarm Level 2
ALM_083	Node 23 RTD 6 Alarm Level 1
ALM_084	Node 23 RTD 6 Alarm Level 2

Manual	35018V3	
--------	---------	--

ALARM Number	Description
ALM_085	Node 23 RTD 7 Alarm Level 1
ALM_086	Node 23 RTD 7 Alarm Level 2
ALM_087	Node 23 RTD 8 Alarm Level 1
ALM_088	Node 23 RTD 8 Alarm Level 2
ALM_089	Node 26 AI_1 Fault
ALM_090	Node 26 AI_2 Fault
ALM_091	Node 26 AI_3 Fault
ALM_092	Node 26 AI_4 Fault
ALM_093	Node 26 AI_5 Fault
ALM_094	Node 26 AI_6 Fault
ALM_095	Node 26 AI_7 Fault
ALM_096	Node 26 AI_8 Fault
ALM_097	Node 26 AO_1 Fault
ALM_098	Node 26 AO_2 Fault
ALM_099	Node 26 AI 1 Alarm Level 1
ALM_100	Node 26 AI 1 Alarm Level 2
ALM_101	Node 26 AI 2 Alarm Level 1
ALM_102	Node 26 AI 2 Alarm Level 2
ALM_103	Node 26 AI 3 Alarm Level 1
ALM_104	Node 26 AI 3 Alarm Level 2
ALM_105	Node 26 AI 4 Alarm Level 1
ALM_106	Node 26 AI 4 Alarm Level 2
ALM_107	Node 26 AI 5 Alarm Level 1
ALM_108	Node 26 AI 5 Alarm Level 2
ALM_109	Node 26 AI 6 Alarm Level 1
ALM_110	Node 26 AI 6 Alarm Level 2
ALM_111	Node 26 AI 7 Alarm Level 1
ALM_112	Node 26 AI 7 Alarm Level 2
ALM_113	Node 26 AI 8 Alarm Level 1
ALM_114	Node 26 AI 8 Alarm Level 2
ALM_115	All CAN2 Network Links Failed
ALM_116	CAN2 Syscon Link Error - XFER
ALM_117	CAN2 Backup Link Error
ALM_118	SPARE_118

Manual 35018V3

505XT Dual Redundant Control System for Steam Turbines

Trips When using the 505DR, the Trip List in Volume 1 of this manual is replaced with the following list.

Table 17-6. Trip Messages

SD_01External Trip Input 1SD_02Emergency Stop Button
SD_02 Emergency Stop Button
SD_03 Overspeed
SD_04 All Speed Probes Failed
SD_05 HP Actuator Fault
SD_06 HP2 Actuator Fault
SD_07 Aux Input Failed
SD_08 Power Up Trip
SD_09 Normal Shutdown Complete
SD_10 Trip Command from Modbus
SD_11 Unit in Calibration Mode
SD_12 Configuration Error
SD_13 Tie Breaker Opened
SD_14 GEN Breaker Opened
SD_15 External Trip 2
SD_16 External Trip 3
SD_17 External Trip 4
SD_18 External Trip 5
SD_19 External Trip 6
SD_20 External Trip 7
SD_21 External Trip 8
SD_22 External Trip 9
SD_23 External Trip 10
SD_24 HP Ramp at Max/No Speed
SD_25 Actuator Scaling Min > Max
SD_26 Inlet Input Signal Failed
SD_27 Ext/Adm Input Signal Failed
SD_28 Exhaust Input Signal Failed
SD_29 Inlet Stm Pressure Level2 TRIP
SD_30 EXH Stm Pressure Level2 TRIP
SD_31 Selected PV 1 Level 2 TRIP
SD_32 Selected PV 2 Level 2 TRIP
SD_33 Selected PV 3 Level 2 TRIP
SD_34 Tunable Trip
SD_35 Configuration Mode (IO Lock)
SD_36 RTCnet Summary Trip
SD_37 Open Wire on MPUs
SD_38 LP Actuator Fault
SD_39 Overspeed Test Limit Reached
SD_40 CAN1 Digital Driver Network Fault

Manual 35018V3

505XT Dual Redundant Control System for Steam Turbines

TRIP Number	Description
SD_41	External Trip 11
SD_42	External Trip 12
SD_43	External Trip 13
SD_44	External Trip 14
SD_45	External Trip 15
SD_46	Trip cmd from Display/RemoteView
SD_47	LP2 Actuator Fault
SD_48	Started but no SYCON Speed
SD_49	Wait Run Permissive Active
SD_50	spare_50
SD_51	spare_51
SD_52	spare_52
SD_53	spare_53
SD_54	spare_54
SD_55	spare_55

When using the 505DR, if RTCnet nodes (distributed I/O) are used then this alarm list will apply. It details the summary of alarm events that come from the CAN2 network.

Table 17-7. Distributed I/O	Trip	Messages
-----------------------------	------	----------

TRIP Number	Description
SD_01	Loss of VIB Signals -Trip
SD_02	Node 1 AI_1 Level 2 Trip
SD_03	Node 1 AI_2 Level 2 Trip
SD_04	Node 1 AI_3 Level 2 Trip
SD_05	Node 1 AI_4 Level 2 Trip
SD_06	Node 1 AI_5 Level 2 Trip
SD_07	Node 1 AI_6 Level 2 Trip
SD_08	Node 1 AI_7 Level 2 Trip
SD_09	Node 1 AI_8 Level 2 Trip
SD_10	Node 2 AI_1 Level 2 Trip
SD_11	Node 2 AI_2 Level 2 Trip
SD_12	Node 2 AI_3 Level 2 Trip
SD_13	Node 2 AI_4 Level 2 Trip
SD_14	Node 2 AI_5 Level 2 Trip
SD_15	Node 2 AI_6 Level 2 Trip
SD_16	Node 2 AI_7 Level 2 Trip
SD_17	Node 2 AI_8 Level 2 Trip
SD_18	Node 3 RTD_1 Level 2 Trip
SD_19	Node 3 RTD_2 Level 2 Trip
SD_20	Node 3 RTD_3 Level 2 Trip
SD_21	Node 3 RTD_4 Level 2 Trip
SD_22	Node 3 RTD_5 Level 2 Trip
SD_23	Node 3 RTD_6 Level 2 Trip

Manual 35018V3

505XT Dual Redundant Control System for Steam Turbines

TRIP Number	Description
SD_24	Node 3 RTD_7 Level 2 Trip
SD_25	Node 3 RTD_8 Level 2 Trip
SD_26	Spare26
SD_27	Spare27
SD_28	Spare28
SD_29	Spare29
SD_30	Spare30
SD_31	Spare31
SD_32	Spare32
SD_33	Spare33
SD_34	Spare34
SD_35	Spare35

Modbus Addressing

The 505DR Modbus lists are given below. The Modbus lists are very similar to the lists given in Volume 1, but are unique to the 505DR so addresses should be verified if updating systems from Simplex to Redundant.

Table 17-8. Boolean Write Addresses	Table 17-8.	Boolean	Write	Addresses
-------------------------------------	-------------	---------	-------	-----------

Addr	Description
0:0001	Emergency Shutdown
0:0002	Emergency Shutdown Acknowledge
0:0003	Controlled Shutdown
0:0004	Abort Controlled Shutdown
0:0005	System Reset
0:0006	Start / Run
0:0007	Manual Open VLV Limiter
0:0008	Manual Close VLV Limiter
0:0009	Lower Speed Setpoint
0:0010	Raise Speed Setpoint
0:0011	Go To Rated (Idle / Rated)
0:0012	Go To Idle (Idle / Rated)
0:0013	Halt Auto Start Seq
0:0014	Continue Auto Start Seq
0:0015	Enable Remote Speed Setpoint Control
0:0016	Disable Remote Speed Setpoint Control
0:0017	Go To Modbus Entered Speed Setpt
0:0018	Comm Heartbeat to BR_89
0:0019	Arm Frequency Control
0:0020	Disarm Frequency Control
0:0021	Sync Enable

rite Addre	esses
0:0022	Sync Disable
0:0023	Enable Cascade Control
0:0024	Disable Cascade Control
0:0025	Lower Cascade Setpoint
0:0026	Raise Cascade Setpoint
0:0027	Enable Remote Cascade Setpoint Control
0:0028	Disable Remote Cascade Setpoint Contro
0:0029	Go To Modbus Entered Cascade Setpt
0:0030	Spare
0:0031	Enable Aux Control
0:0032	Disable Aux Control
0:0033	Lower Aux Setpoint
0:0034	Raise Aux Setpoint
0:0035	Enable Remote Aux Setpoint Control
0:0036	Disable Remote Aux Setpoint Control
0:0037	Go To Modbus Entered Auxiliary Setpt
0:0038	Spare
0:0039	Select Remote Ctrl (Remote/Local)
0:0040	Select Local Ctrl (Remote/Local)
0:0041	Spare
0:0042	Modbus Shutdown Acknowledge
0:0043	Energize Relay 2

Manual 35018V3

0:0044	De-Energize Relay 2	
0:0045	Energize Relay 3	
0:0046	De-Energize Relay 3	
0:0047	Energize Relay 4	
0:0048	De-Energize Relay 4	
0:0049	Energize Relay 5	
0:0050	De-Energize Relay 5	
0:0051	Energize Relay 6	
0:0052	De-Energize Relay 6	
0:0053	Energize Relay 7	
0:0054	De-Energize Relay 7	
0:0055	Spare	
0:0056	Spare	
0:0057	Enable Extraction Control	
0:0058	Disable Extraction Control	
0:0059	Lower Extraction Setpoint	
0:0060	Raise Extraction Setpoint	
0:0061	Enable Remote Extr Setpoint Control	
0:0062	Disable Remote Extr Setpoint Control	
0:0063	Go To Modbus Entered Extraction Setpt	
0:0064	Open LP Valve Limiter	
0:0065	Close LP Valve Limiter	
0:0066	Decrease Extr/Adm Demand	
0:0067	Increase Extr/Adm Demand	
0:0068	Enable Extr/Adm Priority	
0:0069	Disable Extr/Adm Priority	
0:0070	* Enable Droop Setpoint change	
0:0071	* Disable Droop Setpoint change	
0:0072	* Enable Speed Forwarding	
0:0073	* Disable Speed Forwarding	
0:0074		0
0:0075	Momentarily Energize Relay 2	
0:0076	Momentarily Energize Relay 3	
0:0077	Momentarily Energize Relay 4	
0:0078	Momentarily Energize Relay 5	
0:0079	Momentarily Energize Relay 6	
0:0080	Momentarily Energize Relay 7	

0:0081	Enable Inlet Control
0:0082	Disable Inlet Control
0:0083	Lower Inlet Setpoint
0:0084	Raise Inlet Setpoint
0:0085	Enable Remote Inlet Setpoint Control
0:0086	Disable Remote Inlet Setpoint Control
0:0087	Go To Modbus Entered Inlet Setpt
0:0088	Enable Remote KW Setpoint Control
0:0089	Disable Remote KW Setpoint Control
0:0090	Isolated Controller SP Raise
0:0091	Isolated Controller SP Lower
0:0092	Select Hot Start
0:0093	Select Cold Start
0:0094	Energize Relay 8
0:0095	De-Energize Relay 8
0:0096	Momentarily Energize Relay 8
0:0097	Enable Exhaust Control
0:0098	Disable Exhaust Control
0:0099	Lower Exhaust Setpoint
0:0100	Raise Exhaust Setpoint
0:0101	Enable Remote Exhaust Setpoint Control
0:0102	Disable Remote Exhaust Setpoint Control
0:0103	Go To Modbus Entered Exhaust Setpt
0:0104	Request Alternate Mode Transfer
0:0105	Mode 0 Request
0:0106	Enable Manual P Demand
0:0107	Enable Manual P Control
0:0108	Spare 108
0:0109	Lower Manual P Setpoint
0:0110	Raise Manual P Setpoint
0:0111	Enable Remote Manual P Setpoint Control
0:0112	Disable Remote Manual P Setpoint Control
0:0113	Go To Modbus Entered Manual P Setpt

505XT Dual Redundant Control System for Steam Turbines

Boolean Read Addresses

Table 17-9. Boolean Read Addresses

Addr	Description	1:0039	Modbus Alarm Acknowledge
1:0001	Alarm - MPU #1 Failed	1:0040	Alarm Exists (Common Alarm Indication)
1:0002	Alarm - MPU #2 Failed	1:0041	Trip - External Trip
1:0003	Alarm - Cascade Input Failed	1:0042	Trip - ESD Button
1:0004	Alarm - Aux Input Failed	1:0043	Trip - Overspeed Trip
1:0005	Alarm - KW Input Failed	1:0044	Trip - Loss of Speed Signals
1:0006	Alarm - Sync Input Failed	1:0045	Trip - HP Actuator Fault
1:0007	Alarm - Inlet Press Input Failed	1:0046	Trip - HP2 Actuator Fault
1:0008	Alarm - Remote Speed Input Failed	1:0047	Trip - Aux Input Failed
1:0009	Alarm - Remote Cascade Input Failed	1:0048	Trip - External Trip 2
1:0010	Alarm - Remote Aux Input Failed	1:0049	Trip - External Trip 3
1:0011	Alarm - Loadshare Input Failed	1:0050	Trip - Modbus Link #1 Trip
1:0012	Alarm - HP Actuator Failed	1:0051	SPARE
1:0013	Alarm - HP2 Actuator Failed	1:0052	SPARE
1:0014	Alarm - Start Permissive Not Met	1:0053	Trip - Tie Breaker Open
1:0015	Alarm - Communication Link #1 Failed	1:0054	Trip - Gen Breaker Open
1:0016	Alarm - Communication Link #2 Failed	1:0055	Trip - Power up
1:0017	Alarm - Generator Breaker Open	1:0056	Trip - Manual Stop
1:0018	Alarm - Turbine Trip	1:0057	Trip - External Trip 4
1:0019	Alarm - Tie Breaker Open	1:0058	Trip - External Trip 5
1:0020	Alarm - Overspeed Alarm	1:0059	Trip - Extraction Input Failed
1:0021	Alarm - Tie Breaker Open / No Aux	1:0060	Trip - External Trip 6
1:0022	Alarm - Gen Breaker Open / No Aux	1:0061	Trip - External Trip 7
1:0023	Alarm - Tie Breaker Open / No Casc	1:0062	Trip - External Trip 8
1:0024	Alarm - Gen Breaker Open / No Casc	1:0063	Trip - External Trip 9
1:0025	Alarm - Tie Breaker Open / No Remote	1:0064	Shutdown Exists (Trip Indication)
1:0026	Alarm - Gen Breaker Open / No Remote	1:0065	Modbus ESD Acknowledge Enable
1:0027	Alarm - Stuck in Critical Alarm	1:0066	Moving to Min Setpoint
1:0028	Alarm - Tie Breaker Open / No Extr	1:0067	Ramping to Idle (Idle / Rated)
1:0029	Alarm - Gen Breaker Open / No Extr	1:0068	Idle / Rated at Idle
1:0030	Alarm - Extr Input Failed	1:0069	Ramping to Rated (Idle / Rated)
1:0031	Alarm - Remote Extr Input Failed	1:0070	At Rated
1:0032	Alarm - External Alarm 1	1:0071	Auto Seq - Setpt at Idle 1
1:0033	Alarm - External Alarm 2	1:0072	Auto Seq - Ramp to Idle 2
1:0034	Alarm - External Alarm 3	1:0073	Auto Seq - Setpt at Idle 2
1:0035	Alarm - External Alarm 4	1:0074	Auto Seq - Ramp to rated
1:0036	Alarm - External Alarm 5	1:0075	Auto Seq - At Rated
1:0037	Alarm - External Alarm 6	1:0076	Speed PID In Control
1:0038	CTC Alarm latch	1:0077	Speed Sensor 1 Failed Override ON

Manual 3	35018V3 505XT Dual	Redundan	t Control System for Steam Turbines
1:0078	Speed Sensor 2 Failed Override ON	1:0121	Extraction Is Active
1:0079	Overspeed Test Permissive	1:0122	Extraction Is In Control
1:0080	Overspeed Test In progress	1:0123	Extraction is Inhibited
1:0081	Speed At or above Min Gov	1:0124	Remote Extraction Is Enabled
1:0082	Turbine In Critical Speed Band	1:0125	Remote Extraction Is Active
1:0083	Remote Speed Setpt Is Enabled	1:0126	Rmt Extraction Is In Control
1:0084	Remote Speed Setpt Is Active	1:0127	Rmt Extraction Is Inhibited
1:0085	Remote Speed Setpt Is In Control	1:0128	Pressure Priority Enabled
1:0086	Remote Speed Setpt Is Inhibited	1:0129	Pressure Priority Active
1:0087	Speed PID In Control (not being Imted)	1:0130	Speed Priority Active
1:0088	Auto Seq - at idle 3	1:0131	Priority Transfer Permissible
1:0089	Comm Heartbeat from BW_18	1:0132	* Auto seq:ramp to Idle3
1:0090	Generator Breaker Closed	1:0133	Controlled Stop In Progress
1:0091	Utility Tie Breaker Closed	1:0134	LP Valve Limiter Is Open
1:0092	Synchronizing Rate Selected	1:0135	LP Valve Limiter Is Closed
1:0093	Synchronizing Is Enabled	1:0136	LP Valve Limiter In Control
1:0094	Sync or Load Share Is In Control	1:0137	HP Valve Limiter Is Open
1:0095	Sync / Load Share Is Inhibited	1:0138	HP Valve Limiter Is Closed
1:0096	Spare	1:0139	HP Valve Limiter In Control
1:0097	Frequency Control Armed	1:0140	Remote/Local Remote Selected
1:0098	Frequency Control	1:0141	MODBUS Active
1:0099	Reset	1:0142	Start Permissive
1:0100	Cascade Is Enabled	1:0143	At Steam Map Limit
1:0101	Cascade Is Active	1:0144	At Min Press Limit
1:0102	Cascade Is In Control	1:0145	At HP MAX Limit
1:0103	Cascade Is Inhibited	1:0146	At HP MIN Limit
1:0104	Rmt Cascade Is Enabled	1:0147	At LP MAX Limit
1:0105	Rmt Cascade Is Active	1:0148	At LP MIN Limit
1:0106	Rmt Cascade Is In Control	1:0149	At Max Power Limit
1:0107	Rmt Cascade Is Inhibited	1:0150	At Max Press Limit
1:0108	IH Configured	1:0151	Shutdown Relay Energized(Relay 1)
1:0109	Auxiliary Is Enabled	1:0152	Alarm Relay Driver
1:0110	Auxiliary Is Active	1:0153	Relay 3 Energized
1:0111	Auxiliary Is In Control	1:0154	Relay 4 Energized
1:0112	Aux Active / Not Limiting	1:0155	Relay 5 Energized
1:0113	Aux Active / Not In Control	1:0156	Relay 6 Energized
1:0114	Auxiliary is Inhibited	1:0157	Relay 7 Energized
1:0115	Remote Aux Is Enabled	1:0158	Relay 8 Energized
1:0116	Remote Aux Is Active	1:0159	ESD Contact Input Closed
1:0117	Rmt Aux Is In Control	1:0160	Contact In 2 Closed
1:0118	Rmt Aux Is Inhibited	1:0161	Contact In 3 Closed
1:0119	Startup Complete	1:0162	Contact In 4 Closed
1:0120	Extraction Is Enabled	1:0163	Contact In 5 Closed

inual 3	5018V3 505XT Du	ial Redundan	t Control System for Steam Turbines
0164	Contact In 6 Closed	1:0207	* TRUE = NEW 505 R
0165	Contact In 7 Closed	1:0208	FALSE = 505D, TRUE = 505XT
0166	Contact In 8 Closed	1:0209	Alarm - External Alarm 7
0167	Contact In 9 Closed	1:0210	Alarm - External Alarm 8
0168	Contact In 10 Closed	1:0211	Alarm - External Alarm 9
0169	Contact In 11 Closed	1:0212	Alarm - IH-act1 Failed from BI
0170	Contact In 12 Closed	1:0213	Alarm - IH-act2 Failed from BI
0171	Contact In 13 Closed	1:0214	Spare
0172	Contact In 14 Closed	1:0215	Alarm - IH-A Pressure Input Failed
0173	Contact In 15 Closed	1:0216	Alarm - AI FW Fault
0174	Contact In 16 Closed	1:0217	Alarm - Remote Droop fault
0175	Aux Controller Configured	1:0218	Alarm - Hwr com1 fault
0176	Sync Function Configured	1:0219	Alarm - Temp for Hot/Cold Starts Failed
0177	Modbus- ESD Control Configured	1:0220	Alarm - Start Temperature 1 Failed
0178	Manual Start Configured	1:0221	Alarm - Start Temperature 2 Failed
0179	Auto Start Configured	1:0222	Trip - External Trip 10
0180	Semi-Auto Start Configured	1:0223	Trip - HP Ramp at Max/No Speed
0181	Idle/Rated Start Configured	1:0224	SPARE
0182	Auto Start Sequence Configured	1:0225	SPARE
0183	Inlet Pressure Configured	1:0226	SPARE
0184	Remote Control Configured	1:0227	SPARE
0185	Loadsharing Configured	1:0228	SPARE
0186	HP2 Configured	1:0229	SPARE
0187	Gen Set Configured	1:0230	SPARE
0188	Cascade Control Configured	1:0231	SPARE
0189	Remote Cascade Configured	1:0232	SPARE
0190	Aux Control Configured	1:0233	Controlled Stop In Progress
0191	Remote Aux Configured	1:0234	SPARE
0192	Enables Mod Port1 In Local	1:0235	SPARE
0193	Start Permissive Configured	1:0236	SPARE
0194	Frequency Arm/Disarm Configured	1:0237	SPARE
0195	Frequency Control Configured	1:0238	SPARE
0196	MPU 2 Configured	1:0239	SPARE
0197	Local/Remote Configured	1:0240	* Spare
0198	Local Trip Enabled	1:0241	* IH-B Pressure Input Failed
0199	Casc Tracking Configured	1:0242	Alarm - Spare 011
0200	KW Signal OK	1:0243	Alarm - Spare 012
0201	Extr/Adm Configured	1:0244	Alarm - Remote KW Setpoint Failed
0202	Admission-only Configured	1:0245	Alarm - Exhaust Press Input Failed
0203	Extr Enable/Disable Configured	1:0246	Alarm - Overspeed Test Enabled
0204	Priority Selection Configured	1:0247	Alarm - HP Valve Feedback Failed
0205	Remote Extr/Adm Setpt Configured	1:0248	Alarm - HP2 Valve Feedback Failed

Manual 3	5018V3	505XT Dual R	edundan	t Control System for Steam Turbines
1:0250	Alarm	- Rem SP Isolated PID Failed	1:0293	Alarm - MPU1 Failed Open Wire Test
1:0251	Alarm	- Customer Input #1 Failed	1:0294	Alarm - MPU2 Failed Open Wire Test
1:0252		- Customer Input #2 Failed	1:0295	Alarm - Internal HW Simulation Enabled
1:0253		- Customer Input #3 Failed	1:0296	Alarm - Pressure Compensation Curve Error
1:0254		- Mod Comm Link #3 Failed	1:0297	Alarm - Actuator Linearization Curve Error
1:0255	Alarm	- AO_01 Readback Fault		Alarm - Remote Manual P Demand Input
1:0256		- AO_02 Readback Fault	-1:0298	Failed
1:0257		- AO_03 Readback Fault	1:0299	Alarm - Remote Exhaust SP Input Failed
1:0258		- AO_04 Readback Fault		
1:0259		- AO_05 Readback Fault	_1:0300	Alarm - Remote Inlet Pressure SP Input Failed
1:0260		- AO 06 Readback Fault	1:0301	Alarm - LP Position Feedback Input Failed
1:0261	Alarm	- Chassis Temp	1:0302	Alarm - Reverse Rotation Detected
1:0262		- HP Valve Pos Fdbk Diff	1:0303	Alarm - LinkNet Summary Alarm
1:0263		- HP2 Valve Pos Fdbk Diff	1:0304	Spare
1:0264	Alarm	- Limiter in Control	1:0305	Spare
1:0265	Alarm	- Inlet Steam Pressure Lvl1	1:0306	Alarm - Tie Breaker Open / No Exhaust
1:0266	Alarm	- Inlet Steam Pressure Lvl2	1:0307	Alarm - Gen Breaker Open / No Exhaust
1:0267	Alarm	- Exh Steam Pressure Lvl1	1:0308	Alarm - LP Actuator Fault (Act1 or 2)
1:0268	Alarm	- Exh Steam Pressure Lvl2	1:0309	Alarm - LP Actuator Fault ALM (DVP1 or 2)
1:0269	Alarm	- Selected PV 1 Level 1	1:0310	Alarm - Speed Below Min - No Extraction
1:0270	Alarm	- Selected PV 1 Level 2		Alarm - LP Lmtr->No Spd Cntl->Ratio Lmtr
1:0271	Alarm	- Selected PV 2 Level 1	_1.0511	Dsbl
1:0272	Alarm	- Selected PV 2 Level 2	1:0312	Alarm - External alarm # 10
1:0273	Alarm	- Selected PV 3 Level 1	1:0313	Alarm - External alarm # 11
1:0274	Alarm	- Selected PV 3 Level 2	1:0314	Trip - Unit in Calibration Mode
1:0275	Alarm -	Tunable Alarm	1:0315	Trip - Configuration Error
1:0276	Alarm -	Tie Open / No Inlet	1:0316	Trip - Inlet Stm Pressure Level2
1:0277	Alarm -	Gen Open / No Inlet	1:0317	Trip - EXH Stm Pressure Level2
1:0278	Alarm -	Actuator 1 Readout Fault	1:0318	Trip - Selected PV 1 Level 2
1:0279	Alarm -	Actuator 2 Readout Fault	1:0319	Trip - Selected PV 2 Level 2
1:0280	Alarm -	CAN1_DVP1 Summary ALM	1:0320	Trip - Selected PV 3 Level 2
1:0281	Alarm -	CAN1_DVP2 Summary ALM	1:0321	Trip - Tunable Trip
1:0282	Alarm -	HP Actuator Fault (DVP1 or 2)	1:0322	Trip - Configuration Mode (IO Lock)
1:0283	Alarm -	HP2 Actuator Fault (DVP1 or 2)	1:0323	Trip - Linknet Summary Trip
1:0284	Alarm -	Comm Link to DSLC2 Failed	1:0324	Trip - Open Wire on MPUs
1:0285	Alarm -	KW Load Al Failed	1:0325	Trip - LP Actuator Failed
1:0286	Alarm -	Turbine Maintenance Interval Alm	1:0326	Trip - Overspeed Test Limit Reached
1:0287	Alarm -	Start Temperature #1 Override Active	1:0327	Trip - spare_40
1:0288	Alarm -	Start Temperature #2 Override Active	1:0328	Contact In 17 Closed
1:0289	Alarm -	Comm Link to EasyGen Failed	1:0329	Contact In 18 Closed
1:0290	Alarm -	Comm Link to LS-5 Failed	1:0330	Contact In 19 Closed
1:0291	Alarm -	Comm Link to MFR300 Failed	1:0331	Contact In 20 Closed
1:0292	Alarm -	Comm Link to HiProtec Failed	1:0332	Relay 2 Energized

	35018V3		t Control System for Steam Turbines
:0333	Inlet Is Enabled	1:0376	Exhaust Limiter Configured
:0334	Inlet Is Active	1:0377	Exhaust Control Configured
:0335	Inlet Is In Control	1:0378	Remote Exhaust Configured
:0336	Inlet Active / Not Limiting	1:0379	At MIN Flow Limit
:0337	Inlet Active / Not In Control	1:0380	Mode Transfer Inhibited
:0338	Inlet is Inhibited	1:0381	Alternate Mode Active
:0339	Remote Inlet Is Enabled	1:0382	spare
:0340	Remote Inlet Is Active	1:0383	Illegal Steam Map
:0341	Rmt Inlet Is In Control	1:0384	Ratio Limiter Active
:0342	Rmt Inlet Is Inhibited	1:0385	RTD Units: True = F, False = C
:0343	Inlet Limiter Configured	1:0386	LinkNet Node 4: BI 01
:0344	Inlet Control Configured	1:0387	LinkNet Node 4: BI 02
:0345	Remote Inlet Configured	1:0388	LinkNet Node 4: BI 03
:0346	Remote KW Setpt Is Enabled	1:0389	LinkNet Node 4: BI 04
:0347	Remote KW Setpt Is Active	1:0390	LinkNet Node 4: BI 05
:0348	Remote KW Setpt Is In Control	1:0391	LinkNet Node 4: BI 06
:0349	Remote KW Setpt Is Inhibited	1:0392	LinkNet Node 4: BI 07
:0350	Remote KW Control Configured	1:0393	LinkNet Node 4: BI 08
:0351	* IHB Configured	1:0394	LinkNet Node 4: BI 09
:0352	Enables Mod Port2 In Local	1:0395	LinkNet Node 4: BI 10
:0353	Enables Mod Port3 In Local	1:0396	LinkNet Node 4: BI 11
:0354	Relay 2 is Level Switch	1:0397	LinkNet Node 4: BI 12
:0355	Relay 3 is Level Switch	1:0398	LinkNet Node 4: BI 13
:0356	Relay 4 is Level Switch	1:0399	LinkNet Node 4: BI 14
:0357	Relay 5 is Level Switch	1:0400	LinkNet Node 4: BI 15
:0358	Relay 6 is Level Switch	1:0401	LinkNet Node 4: BI 16
:0359	Relay 7 is Level Switch	1:0402	LinkNet Node 5: BO 01
:0360	Relay 8 is Level Switch	1:0403	LinkNet Node 5: BO 02
:0361	Extraction Active / Not Limiting	1:0404	LinkNet Node 5: BO 03
:0362	Extraction Active / Not In Contro		LinkNet Node 5: BO 04
:0363	Extraction Limiter Configured	1:0406	LinkNet Node 5: BO 05
:0364	Extraction Control Configured	1:0407	LinkNet Node 5: BO 06
:0365	Remote Extraction Configured	1:0408	LinkNet Node 5: BO 07
:0366	Exhaust Is Enabled	1:0409	LinkNet Node 5: BO 08
:0367	Exhaust Is Active	1:0410	LinkNet Node 5: BO 09
:0368	Exhaust Is In Control	1:0411	LinkNet Node 5: BO 10
:0369	Exhaust Active / Not Limiting	1:0412	LinkNet Node 5: BO 11
:0370	Exhaust Active / Not In Control	1:0413	LinkNet Node 5: BO 12
:0370	Exhaust is Inhibited	1:0413	LinkNet Node 5: BO 12
:0372	Remote Exhaust Is Enabled	1:0414	LinkNet Node 5: BO 13
:0373	Remote Exhaust Is Active	1:0416	LinkNet Node 5: BO 15
:0373	Rmt Exhaust Is In Control	1:0417	LinkNet Node 5: BO 16
:0375	Rmt Exhaust Is Inhibited	1:0418	LinkNet Node 1 Comm Fault

1:0419 LinkNet Node 2 Comm Fault 1:0462 LinkNet Node 1 Al 4 Alarm Level 2 1:0421 LinkNet Node 3 Comm Fault 1:0463 LinkNet Node 1 Al 4 Alarm Level 2 1:0421 LinkNet Node 4 Comm Fault 1:0466 LinkNet Node 1 Al 5 Alarm Level 2 1:0422 LinkNet Node 5 Comm Fault 1:0466 LinkNet Node 1 Al 6 Alarm Level 2 1:0424 LinkNet Node 2 Failed 1:0467 LinkNet Node 1 Al 6 Alarm Level 2 1:0424 LinkNet Node 4 Failed 1:0466 LinkNet Node 1 Al 7 Alarm Level 2 1:0425 LinkNet Node 5 Failed 1:0470 LinkNet Node 1 Al 2 Alarm Level 2 1:0424 LinkNet Node 1 Al 2 Fault 1:0470 LinkNet Node 1 Al 2 Alarm Level 2 1:0424 LinkNet Node 1 Al 2 Fault 1:0472 LinkNet Node 1 Al 2 Fault 1:0473 1:0433 LinkNet Node 1 Al 2 Fault 1:0474 LinkNet Node 2 Al 2 Alarm Level 2 1:0433 1:0434 LinkNet Node 1 Al 2 Fault 1:0474 LinkNet Node 2 Al 2 Alarm Level 2 1:0433 1:0434 LinkNet Node 1 Al 2 Fault 1:0474 LinkNet Node 2 Al 2 Alarm Level 2 1:0434 1:0434	Manual 3	35018V3	505XT Dual Redundan	t Control System for Steam Turbines
1:0421 LinkNet Node 1 AI 5 Alarm Level 1 1:0422 LinkNet Node 1 AI 5 Alarm Level 2 1:0423 LinkNet Node 1 Failed 1:0465 1:0424 LinkNet Node 1 AI 6 Alarm Level 2 1:0424 LinkNet Node 3 Failed 1:0466 1:0424 LinkNet Node 3 Failed 1:0467 1:0425 LinkNet Node 4 Failed 1:0468 1:0426 LinkNet Node 4 Failed 1:0468 1:0425 LinkNet Node 4 Failed 1:0468 1:0426 LinkNet Node 4 AI 1 Fault 1:0470 1:0428 LinkNet Node 1 AI 2 Fault 1:0471 1:0428 LinkNet Node 1 AI 2 Fault 1:0471 1:0430 LinkNet Node 1 AI 5 Fault 1:0472 1:0431 LinkNet Node 1 AI 5 Fault 1:0474 1:0432 LinkNet Node 1 AI 5 Fault 1:0475 1:0433 LinkNet Node 1 AQ 7 Fault 1:0476 1:0434 LinkNet Node 1 AQ 7 Fault 1:0476 1:0435 LinkNet Node 2 AI 3 Alarm Level 2 1:0434 LinkNet Node 1 AQ 7 Fault 1:0476 1:0435 <	1:0419	LinkNet Node 2 Comm Fault	1:0462	LinkNet Node 1 AI 4 Alarm Level 1
1:0422 LinkNet Node 1 AI 5 Alarm Level 2 1:0423 LinkNet Node 1 AI 6 Alarm Level 1 1:0424 LinkNet Node 1 Failed 1:0465 1:0424 LinkNet Node 2 Failed 1:0466 1:0425 LinkNet Node 3 Failed 1:0468 1:0425 LinkNet Node 4 Failed 1:0468 1:0426 LinkNet Node 4 Failed 1:0468 1:0428 LinkNet Node 4 Failed 1:0470 1:0428 LinkNet Node 1 AI_1 Fault 1:0471 1:0428 LinkNet Node 1 AI_2 Fault 1:0472 1:0428 LinkNet Node 1 AI_3 Fault 1:0472 1:0431 LinkNet Node 1 AI_5 Fault 1:0472 1:0432 LinkNet Node 1 AI_5 Fault 1:0474 1:0433 LinkNet Node 1 AI_5 Fault 1:0476 1:0433 LinkNet Node 1 AI_7 Fault 1:0476 1:0434 LinkNet Node 1 AI_7 Fault 1:0476 1:0435 LinkNet Node 1 AI_7 Fault 1:0476 1:0435 LinkNet Node 2 AI_3 Alarm Level 2 1:0435 LinkNet Node 2 AI_1 Alarm Level 2 1:0434 <	1:0420	LinkNet Node 3 Comm Fault	1:0463	LinkNet Node 1 AI 4 Alarm Level 2
1:0423 LinkNet Node 1 Failed 1:0466 LinkNet Node 1 AI 6 Alarm Level 1 1:0424 LinkNet Node 2 Failed 1:0467 LinkNet Node 1 AI 6 Alarm Level 2 1:0425 LinkNet Node 3 Failed 1:0468 LinkNet Node 1 AI 7 Alarm Level 2 1:0426 LinkNet Node 5 Failed 1:0469 LinkNet Node 1 AI 7 Alarm Level 2 1:0427 LinkNet Node 1 AI _ 1 Fault 1:0471 LinkNet Node 1 AI & Barm Level 2 1:0428 LinkNet Node 1 AI _ 2 Fault 1:0472 LinkNet Node 1 AI _ 3 Fault 1:0472 1:0430 LinkNet Node 1 AI _ 3 Fault 1:0474 LinkNet Node 2 AI 1 Alarm Level 2 1:0431 LinkNet Node 1 AI _ 5 Fault 1:0475 LinkNet Node 2 AI 2 Alarm Level 1 1:0432 LinkNet Node 1 AI _ 6 Fault 1:0476 LinkNet Node 2 AI 2 Alarm Level 2 1:0433 LinkNet Node 1 AI _ 7 Fault 1:0476 LinkNet Node 2 AI 3 Alarm Level 2 1:0433 LinkNet Node 1 AI _ 7 Fault 1:0479 LinkNet Node 2 AI 4 Alarm Level 2 1:0433 LinkNet Node 1 AI _ 7 Fault 1:0479 LinkNet Node 2 AI 4 Alarm Level 2 1:0433 LinkNet Node 2 AI _ 7 Fault 1:047	1:0421	LinkNet Node 4 Comm Fault	1:0464	LinkNet Node 1 AI 5 Alarm Level 1
1:0424 Link Net Node 2 Failed 1:0467 Link Net Node 1 AI 6 Alarm Level 2 1:0425 Link Net Node 3 Failed 1:0468 Link Net Node 1 AI 7 Alarm Level 1 1:0426 Link Net Node 4 Failed 1:0469 Link Net Node 1 AI 7 Alarm Level 1 1:0427 Link Net Node 5 Failed 1:0470 Link Net Node 1 AI 8 Alarm Level 2 1:0428 Link Net Node 1 AI_1 Fault 1:0471 Link Net Node 1 AI 8 Alarm Level 2 1:0429 Link Net Node 1 AI_2 Fault 1:0472 Link Net Node 2 AI 1 Alarm Level 2 1:0430 Link Net Node 1 AI_4 Fault 1:0473 Link Net Node 2 AI 2 Alarm Level 2 1:0431 Link Net Node 1 AI_5 Fault 1:0474 Link Net Node 2 AI 2 Alarm Level 2 1:0433 Link Net Node 1 AI_6 Fault 1:0476 Link Net Node 2 AI 2 Alarm Level 2 1:0434 Link Net Node 1 AI_7 Fault 1:0476 Link Net Node 2 AI 3 Alarm Level 2 1:0434 Link Net Node 1 AO_1 Fault 1:0476 Link Net Node 2 AI 3 Alarm Level 2 1:0435 Link Net Node 2 AI_2 Fault 1:0478 Link Net Node 2 AI 4 Alarm Level 2 1:0435 Link Net Node 2 AI_1 Fault 1:0478	1:0422	LinkNet Node 5 Comm Fault	1:0465	LinkNet Node 1 AI 5 Alarm Level 2
1:0425 LinkNet Node 3 Failed 1:0468 LinkNet Node 1 AI 7 Alarm Level 1 1:0426 LinkNet Node 4 Failed 1:0469 LinkNet Node 1 AI 7 Alarm Level 2 1:0427 LinkNet Node 1 AI 1 Fault 1:0470 LinkNet Node 1 AI 8 Alarm Level 2 1:0428 LinkNet Node 1 AI 2 Fault 1:0471 LinkNet Node 1 AI 2 Fault 1:0472 1:0430 LinkNet Node 1 AI 2 Fault 1:0472 LinkNet Node 1 AI 2 Fault 1:0473 1:0431 LinkNet Node 1 AI 2 Fault 1:0474 LinkNet Node 2 AI 2 Alarm Level 1 1:0433 LinkNet Node 1 AI 2 Fault 1:0475 LinkNet Node 2 AI 2 Alarm Level 1 1:0433 LinkNet Node 1 AI 6 Fault 1:0476 LinkNet Node 2 AI 2 Alarm Level 1 1:0433 LinkNet Node 1 AI 7 Fault 1:0476 LinkNet Node 2 AI 2 Alarm Level 1 1:0434 LinkNet Node 1 AI 7 Fault 1:0477 LinkNet Node 2 AI 4 Alarm Level 2 1:0434 LinkNet Node 1 AI 0 7 Fault 1:0479 LinkNet Node 2 AI 4 Alarm Level 2 1:0435 LinkNet Node 2 AI 0 7 Fault 1:0479 LinkNet Node 2 AI 6 Alarm Level 2 1:0435 LinkNet Node 2 AI 7 Fault 1:0480 LinkNet Node 2 AI 6 Alarm Level 2 1:	1:0423	LinkNet Node 1 Failed	1:0466	LinkNet Node 1 AI 6 Alarm Level 1
1:0426 LinkNet Node 4 Failed 1:0469 LinkNet Node 1 AI 7 Alarm Level 2 1:0427 LinkNet Node 5 Failed 1:0470 LinkNet Node 1 AI 8 Alarm Level 1 1:0428 LinkNet Node 1 AI _1 Fault 1:0471 LinkNet Node 1 AI ag Fault 1:0472 1:0429 LinkNet Node 1 AI _2 Fault 1:0472 LinkNet Node 2 AI a Samu Level 1 1:0430 LinkNet Node 1 AI _3 Fault 1:0472 LinkNet Node 2 AI 2 Alarm Level 2 1:0431 LinkNet Node 1 AI _5 Fault 1:0474 LinkNet Node 2 AI 2 Alarm Level 2 1:0432 LinkNet Node 1 AI _6 Fault 1:0476 LinkNet Node 2 AI 3 Alarm Level 2 1:0433 LinkNet Node 1 AI _6 Fault 1:0476 LinkNet Node 2 AI 3 Alarm Level 2 1:0433 LinkNet Node 1 AI _6 Fault 1:0476 LinkNet Node 2 AI 3 Alarm Level 2 1:0434 LinkNet Node 1 AI _6 Fault 1:0476 LinkNet Node 2 AI 3 Alarm Level 1 1:0434 LinkNet Node 2 AI _6 Fault 1:0478 LinkNet Node 2 AI _6 Alarm Level 1 1:0433 LinkNet Node 2 AI _6 Tault 1:0480 LinkNet Node 2 AI _6 Alarm Level 1 1:0435 LinkNet Node 2 AI _6 Fault 1:0	1:0424	LinkNet Node 2 Failed	1:0467	LinkNet Node 1 AI 6 Alarm Level 2
1:0427LinkNet Node 5 Failed1:0470LinkNet Node 1 AI 8 Alarm Level 11:0428LinkNet Node 1 AI_1 Fault1:0471LinkNet Node 1 AI 8 Alarm Level 21:0429LinkNet Node 1 AI_2 Fault1:0472LinkNet Node 2 AI 1 Alarm Level 11:0430LinkNet Node 1 AI_3 Fault1:0473LinkNet Node 2 AI 2 Alarm Level 21:0431LinkNet Node 1 AI_4 Fault1:0474LinkNet Node 2 AI 2 Alarm Level 21:0432LinkNet Node 1 AI_5 Fault1:0474LinkNet Node 2 AI 2 Alarm Level 11:0433LinkNet Node 1 AI_6 Fault1:0476LinkNet Node 2 AI 3 Alarm Level 11:0434LinkNet Node 1 AI_7 Fault1:0477LinkNet Node 2 AI 4 Alarm Level 11:0435LinkNet Node 1 AO_1 Fault1:0478LinkNet Node 2 AI 4 Alarm Level 21:0436LinkNet Node 1 AO_2 Fault1:0479LinkNet Node 2 AI 5 Alarm Level 21:0437LinkNet Node 2 AI_2 Fault1:0480LinkNet Node 2 AI 5 Alarm Level 11:0438LinkNet Node 2 AI_2 Fault1:0481LinkNet Node 2 AI 5 Alarm Level 11:0440LinkNet Node 2 AI_2 Fault1:0482LinkNet Node 2 AI 6 Alarm Level 11:0444LinkNet Node 2 AI_3 Fault1:0484LinkNet Node 2 AI 7 Alarm Level 11:0444LinkNet Node 2 AI_4 Fault1:0484LinkNet Node 2 AI 7 Alarm Level 11:0444LinkNet Node 2 AI_5 Fault1:0487LinkNet Node 2 AI 7 Alarm Level 11:0444LinkNet Node 2 AI_6 Fault1:0486LinkNet Node 3 RTD 1 Alarm Level 11:0444LinkNet Node 2 AI_6 Fault1:0489LinkNet Node 3	1:0425	LinkNet Node 3 Failed	1:0468	LinkNet Node 1 AI 7 Alarm Level 1
1:0428 LinkNet Node 1 Al_1 Fault 1:0471 LinkNet Node 1 Al_2 Fault 1:0472 LinkNet Node 2 Al 1 Alarm Level 1 1:0429 LinkNet Node 1 Al_2 Fault 1:0472 LinkNet Node 2 Al 1 Alarm Level 1 1:0431 LinkNet Node 1 Al_5 Fault 1:0473 LinkNet Node 2 Al 2 Alarm Level 1 1:0432 LinkNet Node 1 Al_6 Fault 1:0474 LinkNet Node 2 Al 2 Alarm Level 1 1:0432 LinkNet Node 1 Al_6 Fault 1:0476 LinkNet Node 2 Al 3 Alarm Level 1 1:0433 LinkNet Node 1 Al_6 Fault 1:0477 LinkNet Node 2 Al 3 Alarm Level 1 1:0434 LinkNet Node 1 Al_6 Fault 1:0477 LinkNet Node 2 Al 3 Alarm Level 1 1:0434 LinkNet Node 1 Al_6 Fault 1:0477 LinkNet Node 2 Al 4 Alarm Level 1 1:0435 LinkNet Node 1 AO_1 Fault 1:0479 LinkNet Node 2 Al 5 Alarm Level 2 1:0436 LinkNet Node 2 Al_1 Fault 1:0480 LinkNet Node 2 Al 5 Alarm Level 1 1:0439 LinkNet Node 2 Al_2 Fault 1:0480 LinkNet Node 2 Al 6 Alarm Level 1 1:0440 LinkNet Node 2 Al_2 Fault 1:0481 LinkNet Node 2 Al 6 Alarm Level 1 1:0444 LinkNet Node 2 Al_4 Fault 1:0484 LinkNet Node 2 Al_4 Fault	1:0426	LinkNet Node 4 Failed	1:0469	LinkNet Node 1 AI 7 Alarm Level 2
1:0429LinkNet Node 1 Al_2 Fault1:0472LinkNet Node 2 Al 1 Alarm Level 11:0430LinkNet Node 1 Al_3 Fault1:0473LinkNet Node 2 Al 2 Alarm Level 21:0431LinkNet Node 1 Al_4 Fault1:0474LinkNet Node 2 Al 2 Alarm Level 11:0432LinkNet Node 1 Al_6 Fault1:0475LinkNet Node 2 Al 2 Alarm Level 11:0433LinkNet Node 1 Al_6 Fault1:0476LinkNet Node 2 Al 3 Alarm Level 11:0434LinkNet Node 1 Al_7 Fault1:0477LinkNet Node 2 Al 3 Alarm Level 11:0435LinkNet Node 1 Al_7 Fault1:0477LinkNet Node 2 Al 4 Alarm Level 11:0436LinkNet Node 1 AO_1 Fault1:0478LinkNet Node 2 Al 4 Alarm Level 11:0435LinkNet Node 1 AO_2 Fault1:0480LinkNet Node 2 Al 5 Alarm Level 21:0436LinkNet Node 2 Al_2 Fault1:0480LinkNet Node 2 Al 5 Alarm Level 11:0438LinkNet Node 2 Al_2 Fault1:0481LinkNet Node 2 Al 6 Alarm Level 11:0439LinkNet Node 2 Al_2 Fault1:0483LinkNet Node 2 Al 6 Alarm Level 21:0441LinkNet Node 2 Al_3 Fault1:0483LinkNet Node 2 Al 7 Alarm Level 21:0444LinkNet Node 2 Al_6 Fault1:0484LinkNet Node 2 Al 7 Alarm Level 11:0444LinkNet Node 2 Al_7 Fault1:0485LinkNet Node 3 RTD 1 Alarm Level 11:0444LinkNet Node 2 Al_1 & Fault1:0489LinkNet Node 3 RTD 1 Alarm Level 11:0444LinkNet Node 2 Al_1 & Fault1:0489LinkNet Node 3 RTD 1 Alarm Level 11:0444LinkNet Node 2 Al_1 & Fault1:0489Li	1:0427	LinkNet Node 5 Failed	1:0470	LinkNet Node 1 AI 8 Alarm Level 1
1:0430 LinkNet Node 1 Al_3 Fault 1:0473 LinkNet Node 2 Al 1 Alarm Level 2 1:0431 LinkNet Node 1 Al_5 Fault 1:0474 LinkNet Node 2 Al 2 Alarm Level 1 1:0432 LinkNet Node 1 Al_5 Fault 1:0475 LinkNet Node 2 Al 2 Alarm Level 2 1:0433 LinkNet Node 1 Al_6 Fault 1:0476 LinkNet Node 2 Al 3 Alarm Level 1 1:0434 LinkNet Node 1 Al_7 Fault 1:0477 LinkNet Node 2 Al 3 Alarm Level 1 1:0435 LinkNet Node 1 Al_8 Fault 1:0477 LinkNet Node 2 Al 4 Alarm Level 1 1:0435 LinkNet Node 1 AO_1 Fault 1:0479 LinkNet Node 2 Al 4 Alarm Level 2 1:0434 LinkNet Node 1 AO_2 Fault 1:0470 LinkNet Node 2 Al 5 Alarm Level 1 1:0438 LinkNet Node 2 Al_1 Fault 1:0480 LinkNet Node 2 Al 6 Alarm Level 2 1:0439 LinkNet Node 2 Al_2 Fault 1:0482 LinkNet Node 2 Al 7 Alarm Level 1 1:0440 LinkNet Node 2 Al_3 Fault 1:0482 LinkNet Node 2 Al 7 Alarm Level 2 1:0444 LinkNet Node 2 Al_2 Fault 1:0486 LinkNet Node 2 Al 7 Alarm Level 2 1:0444 LinkNet Node 2 Al_3 Fault 1:0486	1:0428	LinkNet Node 1 AI_1 Fault	1:0471	LinkNet Node 1 AI 8 Alarm Level 2
1:0431LinkNet Node 1 Al_4 Fault1:0474LinkNet Node 2 Al 2 Alarm Level 11:0432LinkNet Node 1 Al_5 Fault1:0475LinkNet Node 2 Al 2 Alarm Level 21:0433LinkNet Node 1 Al_6 Fault1:0476LinkNet Node 2 Al 3 Alarm Level 11:0434LinkNet Node 1 Al_7 Fault1:0477LinkNet Node 2 Al 3 Alarm Level 11:0435LinkNet Node 1 Al_7 Fault1:0478LinkNet Node 2 Al 4 Alarm Level 11:0436LinkNet Node 1 Al_7 Fault1:0478LinkNet Node 2 Al 4 Alarm Level 21:0435LinkNet Node 1 Al_0 1 Fault1:0479LinkNet Node 2 Al 4 Alarm Level 21:0436LinkNet Node 1 Al_2 Fault1:0480LinkNet Node 2 Al 5 Alarm Level 11:0438LinkNet Node 2 Al_1 Fault1:0480LinkNet Node 2 Al 6 Alarm Level 11:0439LinkNet Node 2 Al_2 Fault1:0482LinkNet Node 2 Al 6 Alarm Level 11:0440LinkNet Node 2 Al_3 Fault1:0483LinkNet Node 2 Al 7 Alarm Level 11:0442LinkNet Node 2 Al_6 Fault1:0484LinkNet Node 2 Al 7 Alarm Level 11:0444LinkNet Node 2 Al_6 Fault1:0487LinkNet Node 2 Al 7 Alarm Level 11:0444LinkNet Node 2 Al_7 Fault1:0486LinkNet Node 2 Al 8 Alarm Level 21:0444LinkNet Node 2 Al_7 Fault1:0486LinkNet Node 3 RTD 1 Alarm Level 11:0444LinkNet Node 2 Al_7 Fault1:0488LinkNet Node 3 RTD 1 Alarm Level 11:0444LinkNet Node 2 Al_7 Fault1:0489LinkNet Node 3 RTD 2 Alarm Level 11:0445LinkNet Node 2 Al_7 Fault1:0489LinkNe	1:0429	LinkNet Node 1 AI_2 Fault	1:0472	LinkNet Node 2 AI 1 Alarm Level 1
1:0432LinkNet Node 1 Al_5 Fault1:0475LinkNet Node 2 Al 2 Alarm Level 21:0433LinkNet Node 1 Al_6 Fault1:0476LinkNet Node 2 Al 3 Alarm Level 11:0434LinkNet Node 1 Al_7 Fault1:0477LinkNet Node 2 Al 4 Alarm Level 21:0435LinkNet Node 1 Al_8 Fault1:0477LinkNet Node 2 Al 4 Alarm Level 11:0436LinkNet Node 1 AO_1 Fault1:0479LinkNet Node 2 Al 4 Alarm Level 11:0437LinkNet Node 2 Al - Fault1:0479LinkNet Node 2 Al 5 Alarm Level 11:0438LinkNet Node 2 Al - Fault1:0480LinkNet Node 2 Al 5 Alarm Level 11:0439LinkNet Node 2 Al - Fault1:0481LinkNet Node 2 Al 6 Alarm Level 11:0439LinkNet Node 2 Al - Fault1:0481LinkNet Node 2 Al 6 Alarm Level 11:0440LinkNet Node 2 Al - Fault1:0483LinkNet Node 2 Al - Fault1:0441LinkNet Node 2 Al - Fault1:0484LinkNet Node 2 Al - Fault1:0442LinkNet Node 2 Al - Fault1:0485LinkNet Node 2 Al - Fault1:0444LinkNet Node 2 Al - Fault1:0486LinkNet Node 2 Al - Fault1:0444LinkNet Node 2 Al - Fault1:0487LinkNet Node 3 RTD - Alarm Level 11:0444LinkNet Node 2 AD - Fault1:0489LinkNet Node 3 RTD - Alarm Level 11:0444LinkNet Node 3 RTD - Fault1:0489LinkNet Node 3 RTD - Alarm Level 11:0444LinkNet Node 3 RTD - Fault1:0490LinkNet Node 3 RTD - Alarm Level 11:0444LinkNet Node 3 RTD - Fault1:0491LinkNet Node 3 RTD 2 Alarm Level 1 </td <td>1:0430</td> <td>LinkNet Node 1 AI_3 Fault</td> <td>1:0473</td> <td>LinkNet Node 2 AI 1 Alarm Level 2</td>	1:0430	LinkNet Node 1 AI_3 Fault	1:0473	LinkNet Node 2 AI 1 Alarm Level 2
1:0433LinkNet Node 1 Al_6 Fault1:0476LinkNet Node 2 Al 3 Alarm Level 11:0434LinkNet Node 1 Al_7 Fault1:0477LinkNet Node 2 Al 3 Alarm Level 21:0435LinkNet Node 1 Al_8 Fault1:0477LinkNet Node 2 Al 4 Alarm Level 11:0436LinkNet Node 1 AO_1 Fault1:0479LinkNet Node 2 Al 4 Alarm Level 11:0437LinkNet Node 1 AO_2 Fault1:0479LinkNet Node 2 Al 5 Alarm Level 21:0438LinkNet Node 2 Al_1 Fault1:0480LinkNet Node 2 Al 5 Alarm Level 11:0439LinkNet Node 2 Al_2 Fault1:0481LinkNet Node 2 Al 6 Alarm Level 11:0440LinkNet Node 2 Al_3 Fault1:0482LinkNet Node 2 Al 6 Alarm Level 11:0444LinkNet Node 2 Al_3 Fault1:0483LinkNet Node 2 Al 6 Alarm Level 21:0444LinkNet Node 2 Al_4 Fault1:0484LinkNet Node 2 Al 7 Alarm Level 11:0444LinkNet Node 2 Al_5 Fault1:0485LinkNet Node 2 Al 7 Alarm Level 11:0444LinkNet Node 2 Al_6 Fault1:0487LinkNet Node 3 RTD 1 Alarm Level 11:0444LinkNet Node 2 Al_7 Fault1:0488LinkNet Node 3 RTD 1 Alarm Level 11:0444LinkNet Node 2 Al_7 Fault1:0489LinkNet Node 3 RTD 1 Alarm Level 11:0444LinkNet Node 3 RTD_1 Fault1:0489LinkNet Node 3 RTD 2 Alarm Level 11:0444LinkNet Node 3 RTD_2 Fault1:0490LinkNet Node 3 RTD 2 Alarm Level 11:0444LinkNet Node 3 RTD_2 Fault1:0490LinkNet Node 3 RTD 2 Alarm Level 11:0444LinkNet Node 3 RTD_2 Fault1:0490L	1:0431	LinkNet Node 1 AI_4 Fault	1:0474	LinkNet Node 2 AI 2 Alarm Level 1
1:0434LinkNet Node 1 Al_7 Fault1:0477LinkNet Node 2 Al 3 Alarm Level 21:0435LinkNet Node 1 Al_8 Fault1:0478LinkNet Node 2 Al 4 Alarm Level 11:0436LinkNet Node 1 AO_1 Fault1:0479LinkNet Node 2 Al 4 Alarm Level 21:0437LinkNet Node 1 AO_2 Fault1:0480LinkNet Node 2 Al 5 Alarm Level 11:0438LinkNet Node 2 Al_1 Fault1:0480LinkNet Node 2 Al 5 Alarm Level 11:0439LinkNet Node 2 Al_2 Fault1:0482LinkNet Node 2 Al 6 Alarm Level 11:0440LinkNet Node 2 Al_3 Fault1:0482LinkNet Node 2 Al 6 Alarm Level 11:0440LinkNet Node 2 Al_4 Fault1:0483LinkNet Node 2 Al 7 Alarm Level 11:0441LinkNet Node 2 Al_5 Fault1:0485LinkNet Node 2 Al 7 Alarm Level 11:0442LinkNet Node 2 Al_6 Fault1:0486LinkNet Node 2 Al 8 Alarm Level 11:0444LinkNet Node 2 Al_7 Fault1:0486LinkNet Node 2 Al 8 Alarm Level 21:0444LinkNet Node 2 Al_9 Fault1:0487LinkNet Node 3 RTD 1 Alarm Level 21:0445LinkNet Node 2 Al_9 Fault1:0488LinkNet Node 3 RTD 1 Alarm Level 11:0446LinkNet Node 3 RTD_1 Fault1:0490LinkNet Node 3 RTD 2 Alarm Level 11:0445LinkNet Node 3 RTD_1 Fault1:0491LinkNet Node 3 RTD 2 Alarm Level 21:0446LinkNet Node 3 RTD_2 Fault1:0492LinkNet Node 3 RTD 2 Alarm Level 21:0445LinkNet Node 3 RTD_4 Fault1:0492LinkNet Node 3 RTD 3 Alarm Level 11:0450LinkNet Node 3 RTD_6 Fault1:0493	1:0432	LinkNet Node 1 AI_5 Fault	1:0475	LinkNet Node 2 AI 2 Alarm Level 2
1:0435LinkNet Node 1 Al_8 Fault1:0478LinkNet Node 2 Al 4 Alarm Level 11:0436LinkNet Node 1 AO_1 Fault1:0479LinkNet Node 2 Al 4 Alarm Level 21:0437LinkNet Node 1 AO_2 Fault1:0480LinkNet Node 2 Al 5 Alarm Level 11:0438LinkNet Node 2 Al_2 Fault1:0481LinkNet Node 2 Al 5 Alarm Level 21:0439LinkNet Node 2 Al_3 Fault1:0482LinkNet Node 2 Al 6 Alarm Level 21:0440LinkNet Node 2 Al_3 Fault1:0483LinkNet Node 2 Al 6 Alarm Level 21:0441LinkNet Node 2 Al_4 Fault1:0483LinkNet Node 2 Al 7 Alarm Level 21:0442LinkNet Node 2 Al_5 Fault1:0484LinkNet Node 2 Al 7 Alarm Level 11:0442LinkNet Node 2 Al_6 Fault1:0486LinkNet Node 2 Al 8 Alarm Level 21:0444LinkNet Node 2 Al_7 Fault1:0487LinkNet Node 2 Al 8 Alarm Level 11:0444LinkNet Node 2 AO_1 Fault1:0487LinkNet Node 3 RTD 1 Alarm Level 11:0445LinkNet Node 2 AO_1 Fault1:0489LinkNet Node 3 RTD 1 Alarm Level 21:0444LinkNet Node 2 AO_2 Fault1:0490LinkNet Node 3 RTD 2 Alarm Level 21:0445LinkNet Node 3 RTD_1 Fault1:0490LinkNet Node 3 RTD 2 Alarm Level 11:0446LinkNet Node 3 RTD_2 Fault1:0492LinkNet Node 3 RTD 3 Alarm Level 11:0445LinkNet Node 3 RTD_4 Fault1:0492LinkNet Node 3 RTD 3 Alarm Level 21:0446LinkNet Node 3 RTD_5 Fault1:0493LinkNet Node 3 RTD 4 Alarm Level 11:0450LinkNet Node 3 RTD_6 Fault1:0494 <td< td=""><td>1:0433</td><td>LinkNet Node 1 AI_6 Fault</td><td>1:0476</td><td>LinkNet Node 2 AI 3 Alarm Level 1</td></td<>	1:0433	LinkNet Node 1 AI_6 Fault	1:0476	LinkNet Node 2 AI 3 Alarm Level 1
1:0436LinkNet Node 1 AO_1 Fault1:0479LinkNet Node 2 AI 4 Alarm Level 21:0437LinkNet Node 1 AO_2 Fault1:0480LinkNet Node 2 AI 5 Alarm Level 11:0438LinkNet Node 2 AI_1 Fault1:0481LinkNet Node 2 AI 5 Alarm Level 21:0439LinkNet Node 2 AI_2 Fault1:0482LinkNet Node 2 AI 6 Alarm Level 11:0440LinkNet Node 2 AI_3 Fault1:0483LinkNet Node 2 AI 6 Alarm Level 21:0441LinkNet Node 2 AI_5 Fault1:0484LinkNet Node 2 AI 7 Alarm Level 11:0442LinkNet Node 2 AI_6 Fault1:0485LinkNet Node 2 AI 7 Alarm Level 21:0443LinkNet Node 2 AI_7 Fault1:0486LinkNet Node 2 AI 8 Alarm Level 11:0444LinkNet Node 2 AI_8 Fault1:0487LinkNet Node 3 Alarm Level 11:0445LinkNet Node 2 AI_8 Fault1:0488LinkNet Node 3 RTD 1 Alarm Level 11:0446LinkNet Node 2 AO_1 Fault1:0490LinkNet Node 3 RTD 1 Alarm Level 21:0447LinkNet Node 3 RTD_1 Fault1:0490LinkNet Node 3 RTD 2 Alarm Level 11:0448LinkNet Node 3 RTD_1 Fault1:0490LinkNet Node 3 RTD 2 Alarm Level 11:0449LinkNet Node 3 RTD_2 Fault1:0491LinkNet Node 3 RTD 2 Alarm Level 21:0444LinkNet Node 3 RTD_1 Fault1:0492LinkNet Node 3 RTD 2 Alarm Level 21:0445LinkNet Node 3 RTD_2 Fault1:0492LinkNet Node 3 RTD 2 Alarm Level 21:0446LinkNet Node 3 RTD_4 Fault1:0494LinkNet Node 3 RTD 3 Alarm Level 21:0450LinkNet Node 3 RTD_5 Fault1:0492L	1:0434	LinkNet Node 1 AI_7 Fault	1:0477	LinkNet Node 2 AI 3 Alarm Level 2
1:0437LinkNet Node 1 AO_2 Fault1:0480LinkNet Node 2 AI 5 Alarm Level 11:0438LinkNet Node 2 AI_2 Fault1:0481LinkNet Node 2 AI 5 Alarm Level 21:0439LinkNet Node 2 AI_2 Fault1:0482LinkNet Node 2 AI 6 Alarm Level 11:0440LinkNet Node 2 AI_3 Fault1:0483LinkNet Node 2 AI 6 Alarm Level 21:0441LinkNet Node 2 AI_4 Fault1:0484LinkNet Node 2 AI 7 Alarm Level 21:0441LinkNet Node 2 AI_5 Fault1:0485LinkNet Node 2 AI 7 Alarm Level 11:0442LinkNet Node 2 AI_6 Fault1:0486LinkNet Node 2 AI 8 Alarm Level 21:0443LinkNet Node 2 AI_6 Fault1:0486LinkNet Node 2 AI 8 Alarm Level 11:0444LinkNet Node 2 AI_7 Fault1:0487LinkNet Node 3 RTD 1 Alarm Level 21:0445LinkNet Node 2 AO_1 Fault1:0488LinkNet Node 3 RTD 1 Alarm Level 21:0446LinkNet Node 2 AO_2 Fault1:0490LinkNet Node 3 RTD 2 Alarm Level 11:0447LinkNet Node 3 RTD_1 Fault1:0490LinkNet Node 3 RTD 2 Alarm Level 11:0448LinkNet Node 3 RTD_2 Fault1:0490LinkNet Node 3 RTD 2 Alarm Level 21:0449LinkNet Node 3 RTD_3 Fault1:0494LinkNet Node 3 RTD 3 Alarm Level 11:0450LinkNet Node 3 RTD_3 Fault1:0494LinkNet Node 3 RTD 4 Alarm Level 21:0451LinkNet Node 3 RTD_6 Fault1:0495LinkNet Node 3 RTD 5 Alarm Level 21:0452LinkNet Node 3 RTD_6 Fault1:0496LinkNet Node 3 RTD 5 Alarm Level 21:0454LinkNet Node 3 RTD_6 Fault1:0496 <td>1:0435</td> <td>LinkNet Node 1 AI_8 Fault</td> <td>1:0478</td> <td>LinkNet Node 2 AI 4 Alarm Level 1</td>	1:0435	LinkNet Node 1 AI_8 Fault	1:0478	LinkNet Node 2 AI 4 Alarm Level 1
1:0438LinkNet Node 2 Al_1 Fault1:0481LinkNet Node 2 Al 5 Alarm Level 21:0439LinkNet Node 2 Al_2 Fault1:0482LinkNet Node 2 Al 6 Alarm Level 11:0440LinkNet Node 2 Al_3 Fault1:0483LinkNet Node 2 Al 6 Alarm Level 21:0441LinkNet Node 2 Al_4 Fault1:0484LinkNet Node 2 Al 7 Alarm Level 21:0442LinkNet Node 2 Al_6 Fault1:0484LinkNet Node 2 Al 7 Alarm Level 11:0442LinkNet Node 2 Al_6 Fault1:0486LinkNet Node 2 Al 8 Alarm Level 21:0443LinkNet Node 2 Al_6 Fault1:0486LinkNet Node 2 Al 8 Alarm Level 11:0444LinkNet Node 2 Al_7 Fault1:0487LinkNet Node 2 Al 8 Alarm Level 21:0445LinkNet Node 2 Al_8 Fault1:0488LinkNet Node 3 RTD 1 Alarm Level 21:0444LinkNet Node 2 AO_1 Fault1:0489LinkNet Node 3 RTD 1 Alarm Level 21:0445LinkNet Node 2 AO_2 Fault1:0490LinkNet Node 3 RTD 2 Alarm Level 11:0446LinkNet Node 3 RTD_1 Fault1:0491LinkNet Node 3 RTD 2 Alarm Level 21:0447LinkNet Node 3 RTD_2 Fault1:0492LinkNet Node 3 RTD 3 Alarm Level 21:0448LinkNet Node 3 RTD_5 Fault1:0492LinkNet Node 3 RTD 3 Alarm Level 21:0450LinkNet Node 3 RTD_5 Fault1:0494LinkNet Node 3 RTD 4 Alarm Level 21:0451LinkNet Node 3 RTD_6 Fault1:0496LinkNet Node 3 RTD 5 Alarm Level 21:0454LinkNet Node 3 RTD_6 Fault1:0496LinkNet Node 3 RTD 5 Alarm Level 21:0455LinkNet Node 3 RTD_6 Fault1:0496 <td>1:0436</td> <td>LinkNet Node 1 AO_1 Fault</td> <td>1:0479</td> <td>LinkNet Node 2 AI 4 Alarm Level 2</td>	1:0436	LinkNet Node 1 AO_1 Fault	1:0479	LinkNet Node 2 AI 4 Alarm Level 2
1:0439LinkNet Node 2 Al_2 Fault1:0482LinkNet Node 2 Al 6 Alarm Level 11:0440LinkNet Node 2 Al_3 Fault1:0483LinkNet Node 2 Al 6 Alarm Level 21:0441LinkNet Node 2 Al_4 Fault1:0484LinkNet Node 2 Al 7 Alarm Level 11:0442LinkNet Node 2 Al_5 Fault1:0485LinkNet Node 2 Al 7 Alarm Level 21:0443LinkNet Node 2 Al_6 Fault1:0486LinkNet Node 2 Al 8 Alarm Level 11:0444LinkNet Node 2 Al_6 Fault1:0486LinkNet Node 2 Al 8 Alarm Level 11:0444LinkNet Node 2 Al_7 Fault1:0487LinkNet Node 2 Al 8 Alarm Level 21:0445LinkNet Node 2 Al_8 Fault1:0488LinkNet Node 3 RTD 1 Alarm Level 11:0446LinkNet Node 2 AO_1 Fault1:0489LinkNet Node 3 RTD 1 Alarm Level 21:0447LinkNet Node 2 AO_2 Fault1:0490LinkNet Node 3 RTD 2 Alarm Level 11:0448LinkNet Node 3 RTD_1 Fault1:0490LinkNet Node 3 RTD 2 Alarm Level 21:0449LinkNet Node 3 RTD_2 Fault1:0492LinkNet Node 3 RTD 3 Alarm Level 21:04451LinkNet Node 3 RTD_3 Fault1:0492LinkNet Node 3 RTD 3 Alarm Level 21:0452LinkNet Node 3 RTD_4 Fault1:0494LinkNet Node 3 RTD 4 Alarm Level 11:0452LinkNet Node 3 RTD_6 Fault1:0495LinkNet Node 3 RTD 5 Alarm Level 21:0453LinkNet Node 3 RTD_6 Fault1:0496LinkNet Node 3 RTD 5 Alarm Level 21:0454LinkNet Node 3 RTD_6 Fault1:0496LinkNet Node 3 RTD 6 Alarm Level 21:0455LinkNet Node 3 RTD_6 Fault1:0496<	1:0437	LinkNet Node 1 AO_2 Fault	1:0480	LinkNet Node 2 AI 5 Alarm Level 1
1:0440LinkNet Node 2 AI_3 Fault1:0483LinkNet Node 2 AI 6 Alarm Level 21:0441LinkNet Node 2 AI_4 Fault1:0484LinkNet Node 2 AI 7 Alarm Level 11:0442LinkNet Node 2 AI_5 Fault1:0485LinkNet Node 2 AI 7 Alarm Level 21:0443LinkNet Node 2 AI_6 Fault1:0486LinkNet Node 2 AI 8 Alarm Level 11:0444LinkNet Node 2 AI_7 Fault1:0486LinkNet Node 2 AI 8 Alarm Level 11:0444LinkNet Node 2 AI_7 Fault1:0487LinkNet Node 2 AI 8 Alarm Level 11:0445LinkNet Node 2 AI_8 Fault1:0488LinkNet Node 3 RTD 1 Alarm Level 11:0446LinkNet Node 2 AO_1 Fault1:0489LinkNet Node 3 RTD 1 Alarm Level 21:0447LinkNet Node 2 AO_2 Fault1:0490LinkNet Node 3 RTD 2 Alarm Level 11:0448LinkNet Node 3 RTD_1 Fault1:0491LinkNet Node 3 RTD 2 Alarm Level 21:0449LinkNet Node 3 RTD_2 Fault1:0492LinkNet Node 3 RTD 3 Alarm Level 21:0450LinkNet Node 3 RTD_3 Fault1:0492LinkNet Node 3 RTD 3 Alarm Level 21:0451LinkNet Node 3 RTD_4 Fault1:0494LinkNet Node 3 RTD 4 Alarm Level 21:0452LinkNet Node 3 RTD_5 Fault1:0495LinkNet Node 3 RTD 5 Alarm Level 11:0454LinkNet Node 3 RTD_6 Fault1:0496LinkNet Node 3 RTD 5 Alarm Level 21:0455LinkNet Node 3 RTD_6 Fault1:0496LinkNet Node 3 RTD 6 Alarm Level 21:0456LinkNet Node 1 Al 1 Alarm Level 11:0499LinkNet Node 3 RTD 6 Alarm Level 11:0456LinkNet Node 1 Al 1 Alarm Level 2<	1:0438	LinkNet Node 2 AI_1 Fault	1:0481	LinkNet Node 2 AI 5 Alarm Level 2
1:0441LinkNet Node 2 Al_4 Fault1:0484LinkNet Node 2 Al 7 Alarm Level 11:0442LinkNet Node 2 Al_5 Fault1:0485LinkNet Node 2 Al 7 Alarm Level 21:0443LinkNet Node 2 Al_6 Fault1:0486LinkNet Node 2 Al 8 Alarm Level 11:0444LinkNet Node 2 Al_7 Fault1:0487LinkNet Node 2 Al 8 Alarm Level 21:0445LinkNet Node 2 Al_8 Fault1:0488LinkNet Node 3 RTD 1 Alarm Level 11:0446LinkNet Node 2 AO_1 Fault1:0489LinkNet Node 3 RTD 1 Alarm Level 11:0446LinkNet Node 2 AO_2 Fault1:0490LinkNet Node 3 RTD 2 Alarm Level 11:0447LinkNet Node 3 RTD_1 Fault1:0491LinkNet Node 3 RTD 2 Alarm Level 11:0448LinkNet Node 3 RTD_2 Fault1:0491LinkNet Node 3 RTD 2 Alarm Level 21:0449LinkNet Node 3 RTD_2 Fault1:0492LinkNet Node 3 RTD 3 Alarm Level 11:0450LinkNet Node 3 RTD_3 Fault1:0493LinkNet Node 3 RTD 3 Alarm Level 11:0451LinkNet Node 3 RTD_4 Fault1:0494LinkNet Node 3 RTD 4 Alarm Level 11:0452LinkNet Node 3 RTD_5 Fault1:0495LinkNet Node 3 RTD 5 Alarm Level 21:0453LinkNet Node 3 RTD_7 Fault1:0496LinkNet Node 3 RTD 6 Alarm Level 21:0454LinkNet Node 3 RTD_7 Fault1:0498LinkNet Node 3 RTD 6 Alarm Level 21:0455LinkNet Node 3 RTD_7 Fault1:0498LinkNet Node 3 RTD 6 Alarm Level 21:0456LinkNet Node 1 Al 1 Alarm Level 11:0499LinkNet Node 3 RTD 7 Alarm Level 21:0458LinkNet Node 1 Al 2 Alarm Leve	1:0439	LinkNet Node 2 AI_2 Fault	1:0482	LinkNet Node 2 AI 6 Alarm Level 1
1:0442LinkNet Node 2 AI_5 Fault1:0485LinkNet Node 2 AI 7 Alarm Level 21:0443LinkNet Node 2 AI_6 Fault1:0486LinkNet Node 2 AI 8 Alarm Level 11:0444LinkNet Node 2 AI_7 Fault1:0487LinkNet Node 2 AI 8 Alarm Level 21:0445LinkNet Node 2 AI_8 Fault1:0487LinkNet Node 3 RTD 1 Alarm Level 21:0445LinkNet Node 2 AO_1 Fault1:0488LinkNet Node 3 RTD 1 Alarm Level 11:0446LinkNet Node 2 AO_2 Fault1:0490LinkNet Node 3 RTD 2 Alarm Level 11:0447LinkNet Node 3 RTD_1 Fault1:0490LinkNet Node 3 RTD 2 Alarm Level 11:0448LinkNet Node 3 RTD_2 Fault1:0491LinkNet Node 3 RTD 2 Alarm Level 21:0449LinkNet Node 3 RTD_2 Fault1:0492LinkNet Node 3 RTD 3 Alarm Level 11:0450LinkNet Node 3 RTD_3 Fault1:0493LinkNet Node 3 RTD 3 Alarm Level 11:0451LinkNet Node 3 RTD_4 Fault1:0494LinkNet Node 3 RTD 4 Alarm Level 11:0452LinkNet Node 3 RTD_5 Fault1:0495LinkNet Node 3 RTD 5 Alarm Level 11:0453LinkNet Node 3 RTD_6 Fault1:0496LinkNet Node 3 RTD 5 Alarm Level 11:0454LinkNet Node 1 Al 1 Alarm Level 11:0498LinkNet Node 3 RTD 6 Alarm Level 21:0457LinkNet Node 1 Al 1 Alarm Level 11:0499LinkNet Node 3 RTD 7 Alarm Level 11:0458LinkNet Node 1 Al 2 Alarm Level 11:0500LinkNet Node 3 RTD 7 Alarm Level 11:0458LinkNet Node 1 Al 2 Alarm Level 11:0501LinkNet Node 3 RTD 7 Alarm Level 11:0459LinkNet	1:0440	LinkNet Node 2 AI_3 Fault	1:0483	LinkNet Node 2 AI 6 Alarm Level 2
1:0443LinkNet Node 2 AI_6 Fault1:0486LinkNet Node 2 AI & Alarm Level 11:0444LinkNet Node 2 AI_7 Fault1:0487LinkNet Node 2 AI & Alarm Level 21:0445LinkNet Node 2 AI_8 Fault1:0488LinkNet Node 3 RTD 1 Alarm Level 11:0446LinkNet Node 2 AO_1 Fault1:0489LinkNet Node 3 RTD 1 Alarm Level 21:0447LinkNet Node 2 AO_2 Fault1:0490LinkNet Node 3 RTD 2 Alarm Level 21:0447LinkNet Node 3 RTD_1 Fault1:0490LinkNet Node 3 RTD 2 Alarm Level 11:0448LinkNet Node 3 RTD_1 Fault1:0491LinkNet Node 3 RTD 2 Alarm Level 11:0449LinkNet Node 3 RTD_2 Fault1:0492LinkNet Node 3 RTD 3 Alarm Level 21:0450LinkNet Node 3 RTD_3 Fault1:0493LinkNet Node 3 RTD 3 Alarm Level 11:0451LinkNet Node 3 RTD_4 Fault1:0494LinkNet Node 3 RTD 4 Alarm Level 21:0452LinkNet Node 3 RTD_5 Fault1:0495LinkNet Node 3 RTD 4 Alarm Level 21:0453LinkNet Node 3 RTD_6 Fault1:0496LinkNet Node 3 RTD 5 Alarm Level 11:0454LinkNet Node 3 RTD_7 Fault1:0497LinkNet Node 3 RTD 6 Alarm Level 21:0455LinkNet Node 1 Al 1 Alarm Level 11:0498LinkNet Node 3 RTD 6 Alarm Level 21:0458LinkNet Node 1 Al 2 Alarm Level 11:0500LinkNet Node 3 RTD 7 Alarm Level 11:0458LinkNet Node 1 Al 2 Alarm Level 21:0502LinkNet Node 3 RTD 7 Alarm Level 11:0458LinkNet Node 1 Al 2 Alarm Level 11:0503LinkNet Node 3 RTD 8 Alarm Level 1 <tr <td="">1:0459<</tr>	1:0441	LinkNet Node 2 AI_4 Fault	1:0484	LinkNet Node 2 AI 7 Alarm Level 1
1:0444LinkNet Node 2 AI_7 Fault1:0487LinkNet Node 2 AI & Alarm Level 21:0445LinkNet Node 2 AI_& Fault1:0488LinkNet Node 3 RTD 1 Alarm Level 11:0446LinkNet Node 2 AO_1 Fault1:0489LinkNet Node 3 RTD 1 Alarm Level 21:0447LinkNet Node 2 AO_2 Fault1:0490LinkNet Node 3 RTD 2 Alarm Level 11:0448LinkNet Node 3 RTD_1 Fault1:0490LinkNet Node 3 RTD 2 Alarm Level 11:0449LinkNet Node 3 RTD_2 Fault1:0491LinkNet Node 3 RTD 2 Alarm Level 21:0449LinkNet Node 3 RTD_2 Fault1:0492LinkNet Node 3 RTD 3 Alarm Level 11:0450LinkNet Node 3 RTD_3 Fault1:0493LinkNet Node 3 RTD 3 Alarm Level 11:0451LinkNet Node 3 RTD_4 Fault1:0494LinkNet Node 3 RTD 4 Alarm Level 21:0452LinkNet Node 3 RTD_5 Fault1:0495LinkNet Node 3 RTD 4 Alarm Level 21:0453LinkNet Node 3 RTD_6 Fault1:0496LinkNet Node 3 RTD 5 Alarm Level 11:0454LinkNet Node 3 RTD_7 Fault1:0497LinkNet Node 3 RTD 5 Alarm Level 21:0455LinkNet Node 3 RTD_8 Fault1:0498LinkNet Node 3 RTD 6 Alarm Level 21:0456LinkNet Node 1 Al 1 Alarm Level 11:0499LinkNet Node 3 RTD 7 Alarm Level 11:0458LinkNet Node 1 Al 2 Alarm Level 21:0500LinkNet Node 3 RTD 7 Alarm Level 21:0459LinkNet Node 1 Al 2 Alarm Level 11:0502LinkNet Node 3 RTD 8 Alarm Level 11:0460LinkNet Node 1 Al 3 Alarm Level 11:0503LinkNet Node 3 RTD 8 Alarm Level 2	1:0442	LinkNet Node 2 AI_5 Fault	1:0485	LinkNet Node 2 AI 7 Alarm Level 2
1:0445LinkNet Node 2 AI_8 Fault1:0488LinkNet Node 3 RTD 1 Alarm Level 11:0446LinkNet Node 2 AO_1 Fault1:0489LinkNet Node 3 RTD 1 Alarm Level 21:0447LinkNet Node 2 AO_2 Fault1:0490LinkNet Node 3 RTD 2 Alarm Level 11:0448LinkNet Node 3 RTD_1 Fault1:0491LinkNet Node 3 RTD 2 Alarm Level 21:0449LinkNet Node 3 RTD_2 Fault1:0491LinkNet Node 3 RTD 3 Alarm Level 21:0449LinkNet Node 3 RTD_3 Fault1:0492LinkNet Node 3 RTD 3 Alarm Level 11:0450LinkNet Node 3 RTD_3 Fault1:0493LinkNet Node 3 RTD 3 Alarm Level 21:0451LinkNet Node 3 RTD_4 Fault1:0494LinkNet Node 3 RTD 4 Alarm Level 11:0452LinkNet Node 3 RTD_5 Fault1:0495LinkNet Node 3 RTD 5 Alarm Level 21:0453LinkNet Node 3 RTD_6 Fault1:0496LinkNet Node 3 RTD 5 Alarm Level 11:0454LinkNet Node 3 RTD_7 Fault1:0497LinkNet Node 3 RTD 6 Alarm Level 21:0455LinkNet Node 1 Al 1 Alarm Level 11:0498LinkNet Node 3 RTD 6 Alarm Level 21:0457LinkNet Node 1 Al 2 Alarm Level 21:0500LinkNet Node 3 RTD 7 Alarm Level 11:0458LinkNet Node 1 Al 2 Alarm Level 21:0502LinkNet Node 3 RTD 7 Alarm Level 21:0459LinkNet Node 1 Al 2 Alarm Level 11:0503LinkNet Node 3 RTD 8 Alarm Level 21:0460LinkNet Node 1 Al 3 Alarm Level 11:0503LinkNet Node 3 RTD 8 Alarm Level 2	1:0443	LinkNet Node 2 AI_6 Fault	1:0486	LinkNet Node 2 AI 8 Alarm Level 1
1:0446LinkNet Node 2 AO_1 Fault1:0489LinkNet Node 3 RTD 1 Alarm Level 21:0447LinkNet Node 2 AO_2 Fault1:0490LinkNet Node 3 RTD 2 Alarm Level 11:0448LinkNet Node 3 RTD_1 Fault1:0490LinkNet Node 3 RTD 2 Alarm Level 21:0449LinkNet Node 3 RTD_2 Fault1:0491LinkNet Node 3 RTD 3 Alarm Level 21:0449LinkNet Node 3 RTD_3 Fault1:0492LinkNet Node 3 RTD 3 Alarm Level 11:0450LinkNet Node 3 RTD_3 Fault1:0493LinkNet Node 3 RTD 4 Alarm Level 21:0451LinkNet Node 3 RTD_5 Fault1:0494LinkNet Node 3 RTD 4 Alarm Level 11:0452LinkNet Node 3 RTD_6 Fault1:0495LinkNet Node 3 RTD 5 Alarm Level 21:0453LinkNet Node 3 RTD_7 Fault1:0496LinkNet Node 3 RTD 5 Alarm Level 11:0454LinkNet Node 3 RTD_7 Fault1:0497LinkNet Node 3 RTD 6 Alarm Level 21:0455LinkNet Node 3 RTD_8 Fault1:0498LinkNet Node 3 RTD 6 Alarm Level 21:0456LinkNet Node 1 Al 1 Alarm Level 11:0499LinkNet Node 3 RTD 7 Alarm Level 11:0458LinkNet Node 1 Al 2 Alarm Level 11:0500LinkNet Node 3 RTD 7 Alarm Level 21:0459LinkNet Node 1 Al 2 Alarm Level 21:0502LinkNet Node 3 RTD 7 Alarm Level 21:0459LinkNet Node 1 Al 2 Alarm Level 11:0503LinkNet Node 3 RTD 8 Alarm Level 11:0460LinkNet Node 1 Al 3 Alarm Level 11:0503LinkNet Node 3 RTD 8 Alarm Level 2	1:0444	LinkNet Node 2 AI_7 Fault	1:0487	LinkNet Node 2 AI 8 Alarm Level 2
1:0447LinkNet Node 2 AO_2 Fault1:0490LinkNet Node 3 RTD 2 Alarm Level 11:0448LinkNet Node 3 RTD_1 Fault1:0491LinkNet Node 3 RTD 2 Alarm Level 21:0449LinkNet Node 3 RTD_2 Fault1:0492LinkNet Node 3 RTD 3 Alarm Level 11:0450LinkNet Node 3 RTD_3 Fault1:0493LinkNet Node 3 RTD 3 Alarm Level 21:0451LinkNet Node 3 RTD_4 Fault1:0494LinkNet Node 3 RTD 4 Alarm Level 21:0452LinkNet Node 3 RTD_5 Fault1:0495LinkNet Node 3 RTD 4 Alarm Level 21:0453LinkNet Node 3 RTD_6 Fault1:0496LinkNet Node 3 RTD 5 Alarm Level 21:0454LinkNet Node 3 RTD_7 Fault1:0497LinkNet Node 3 RTD 5 Alarm Level 21:0455LinkNet Node 3 RTD_8 Fault1:0498LinkNet Node 3 RTD 6 Alarm Level 11:0456LinkNet Node 1 Al 1 Alarm Level 11:0499LinkNet Node 3 RTD 7 Alarm Level 21:0457LinkNet Node 1 Al 2 Alarm Level 11:0501LinkNet Node 3 RTD 7 Alarm Level 21:0459LinkNet Node 1 Al 2 Alarm Level 11:0502LinkNet Node 3 RTD 8 Alarm Level 21:0459LinkNet Node 1 Al 2 Alarm Level 11:0503LinkNet Node 3 RTD 8 Alarm Level 2	1:0445	LinkNet Node 2 AI_8 Fault	1:0488	LinkNet Node 3 RTD 1 Alarm Level 1
1:0448LinkNet Node 3 RTD_1 Fault1:0491LinkNet Node 3 RTD 2 Alarm Level 21:0449LinkNet Node 3 RTD_2 Fault1:0492LinkNet Node 3 RTD 3 Alarm Level 11:0450LinkNet Node 3 RTD_3 Fault1:0493LinkNet Node 3 RTD 3 Alarm Level 21:0451LinkNet Node 3 RTD_4 Fault1:0494LinkNet Node 3 RTD 4 Alarm Level 11:0452LinkNet Node 3 RTD_5 Fault1:0495LinkNet Node 3 RTD 4 Alarm Level 21:0453LinkNet Node 3 RTD_6 Fault1:0496LinkNet Node 3 RTD 5 Alarm Level 11:0454LinkNet Node 3 RTD_7 Fault1:0497LinkNet Node 3 RTD 5 Alarm Level 21:0455LinkNet Node 3 RTD_8 Fault1:0497LinkNet Node 3 RTD 6 Alarm Level 11:0456LinkNet Node 1 Al 1 Alarm Level 11:0499LinkNet Node 3 RTD 7 Alarm Level 11:0458LinkNet Node 1 Al 2 Alarm Level 11:0501LinkNet Node 3 RTD 7 Alarm Level 21:0459LinkNet Node 1 Al 2 Alarm Level 11:0502LinkNet Node 3 RTD 8 Alarm Level 11:0459LinkNet Node 1 Al 3 Alarm Level 11:0503LinkNet Node 3 RTD 8 Alarm Level 1	1:0446	LinkNet Node 2 AO_1 Fault	1:0489	LinkNet Node 3 RTD 1 Alarm Level 2
1:0449LinkNet Node 3 RTD_2 Fault1:0492LinkNet Node 3 RTD 3 Alarm Level 11:0450LinkNet Node 3 RTD_3 Fault1:0493LinkNet Node 3 RTD 3 Alarm Level 21:0451LinkNet Node 3 RTD_4 Fault1:0494LinkNet Node 3 RTD 4 Alarm Level 11:0452LinkNet Node 3 RTD_5 Fault1:0495LinkNet Node 3 RTD 4 Alarm Level 21:0453LinkNet Node 3 RTD_6 Fault1:0496LinkNet Node 3 RTD 5 Alarm Level 21:0454LinkNet Node 3 RTD_7 Fault1:0497LinkNet Node 3 RTD 5 Alarm Level 21:0455LinkNet Node 3 RTD_8 Fault1:0498LinkNet Node 3 RTD 6 Alarm Level 11:0456LinkNet Node 1 Al 1 Alarm Level 11:0499LinkNet Node 3 RTD 6 Alarm Level 21:0457LinkNet Node 1 Al 2 Alarm Level 11:0500LinkNet Node 3 RTD 7 Alarm Level 21:0459LinkNet Node 1 Al 2 Alarm Level 11:0502LinkNet Node 3 RTD 7 Alarm Level 21:0459LinkNet Node 1 Al 3 Alarm Level 21:0503LinkNet Node 3 RTD 8 Alarm Level 1	1:0447	LinkNet Node 2 AO_2 Fault	1:0490	LinkNet Node 3 RTD 2 Alarm Level 1
1:0450LinkNet Node 3 RTD_3 Fault1:0493LinkNet Node 3 RTD 3 Alarm Level 21:0451LinkNet Node 3 RTD_4 Fault1:0494LinkNet Node 3 RTD 4 Alarm Level 11:0452LinkNet Node 3 RTD_5 Fault1:0495LinkNet Node 3 RTD 4 Alarm Level 21:0453LinkNet Node 3 RTD_6 Fault1:0496LinkNet Node 3 RTD 5 Alarm Level 11:0454LinkNet Node 3 RTD_7 Fault1:0497LinkNet Node 3 RTD 5 Alarm Level 21:0455LinkNet Node 3 RTD_8 Fault1:0498LinkNet Node 3 RTD 6 Alarm Level 11:0456LinkNet Node 1 Al 1 Alarm Level 11:0499LinkNet Node 3 RTD 6 Alarm Level 21:0457LinkNet Node 1 Al 2 Alarm Level 11:0500LinkNet Node 3 RTD 7 Alarm Level 11:0458LinkNet Node 1 Al 2 Alarm Level 11:0501LinkNet Node 3 RTD 7 Alarm Level 21:0459LinkNet Node 1 Al 2 Alarm Level 11:0502LinkNet Node 3 RTD 8 Alarm Level 21:0459LinkNet Node 1 Al 3 Alarm Level 21:0503LinkNet Node 3 RTD 8 Alarm Level 2	1:0448	LinkNet Node 3 RTD_1 Fault	1:0491	LinkNet Node 3 RTD 2 Alarm Level 2
1:0451LinkNet Node 3 RTD_4 Fault1:0494LinkNet Node 3 RTD 4 Alarm Level 11:0452LinkNet Node 3 RTD_5 Fault1:0495LinkNet Node 3 RTD 4 Alarm Level 21:0453LinkNet Node 3 RTD_6 Fault1:0496LinkNet Node 3 RTD 5 Alarm Level 11:0454LinkNet Node 3 RTD_7 Fault1:0497LinkNet Node 3 RTD 5 Alarm Level 21:0455LinkNet Node 3 RTD_8 Fault1:0498LinkNet Node 3 RTD 6 Alarm Level 11:0456LinkNet Node 1 Al 1 Alarm Level 11:0499LinkNet Node 3 RTD 6 Alarm Level 21:0457LinkNet Node 1 Al 2 Alarm Level 21:0500LinkNet Node 3 RTD 7 Alarm Level 11:0459LinkNet Node 1 Al 2 Alarm Level 11:0501LinkNet Node 3 RTD 7 Alarm Level 21:0459LinkNet Node 1 Al 3 Alarm Level 21:0502LinkNet Node 3 RTD 8 Alarm Level 11:0460LinkNet Node 1 Al 3 Alarm Level 11:0503LinkNet Node 3 RTD 8 Alarm Level 2	1:0449	LinkNet Node 3 RTD_2 Fault	1:0492	LinkNet Node 3 RTD 3 Alarm Level 1
1:0452LinkNet Node 3 RTD_5 Fault1:0495LinkNet Node 3 RTD 4 Alarm Level 21:0453LinkNet Node 3 RTD_6 Fault1:0496LinkNet Node 3 RTD 5 Alarm Level 11:0454LinkNet Node 3 RTD_7 Fault1:0497LinkNet Node 3 RTD 5 Alarm Level 21:0455LinkNet Node 3 RTD_8 Fault1:0498LinkNet Node 3 RTD 6 Alarm Level 11:0456LinkNet Node 1 Al 1 Alarm Level 11:0499LinkNet Node 3 RTD 6 Alarm Level 21:0457LinkNet Node 1 Al 1 Alarm Level 21:0500LinkNet Node 3 RTD 7 Alarm Level 11:0458LinkNet Node 1 Al 2 Alarm Level 11:0501LinkNet Node 3 RTD 7 Alarm Level 21:0459LinkNet Node 1 Al 2 Alarm Level 21:0502LinkNet Node 3 RTD 8 Alarm Level 11:0460LinkNet Node 1 Al 3 Alarm Level 11:0503LinkNet Node 3 RTD 8 Alarm Level 2	1:0450	LinkNet Node 3 RTD_3 Fault	1:0493	LinkNet Node 3 RTD 3 Alarm Level 2
1:0453LinkNet Node 3 RTD_6 Fault1:0496LinkNet Node 3 RTD 5 Alarm Level 11:0454LinkNet Node 3 RTD_7 Fault1:0497LinkNet Node 3 RTD 5 Alarm Level 21:0455LinkNet Node 3 RTD_8 Fault1:0498LinkNet Node 3 RTD 6 Alarm Level 11:0456LinkNet Node 1 Al 1 Alarm Level 11:0499LinkNet Node 3 RTD 6 Alarm Level 21:0457LinkNet Node 1 Al 1 Alarm Level 21:0500LinkNet Node 3 RTD 7 Alarm Level 11:0458LinkNet Node 1 Al 2 Alarm Level 11:0501LinkNet Node 3 RTD 7 Alarm Level 21:0459LinkNet Node 1 Al 2 Alarm Level 21:0502LinkNet Node 3 RTD 8 Alarm Level 11:0460LinkNet Node 1 Al 3 Alarm Level 11:0503LinkNet Node 3 RTD 8 Alarm Level 2	1:0451	LinkNet Node 3 RTD_4 Fault	1:0494	LinkNet Node 3 RTD 4 Alarm Level 1
1:0454LinkNet Node 3 RTD_7 Fault1:0497LinkNet Node 3 RTD 5 Alarm Level 21:0455LinkNet Node 3 RTD_8 Fault1:0498LinkNet Node 3 RTD 6 Alarm Level 11:0456LinkNet Node 1 Al 1 Alarm Level 11:0499LinkNet Node 3 RTD 6 Alarm Level 21:0457LinkNet Node 1 Al 1 Alarm Level 21:0500LinkNet Node 3 RTD 7 Alarm Level 11:0458LinkNet Node 1 Al 2 Alarm Level 11:0501LinkNet Node 3 RTD 7 Alarm Level 21:0459LinkNet Node 1 Al 2 Alarm Level 21:0502LinkNet Node 3 RTD 8 Alarm Level 11:0460LinkNet Node 1 Al 3 Alarm Level 11:0503LinkNet Node 3 RTD 8 Alarm Level 2	1:0452	LinkNet Node 3 RTD_5 Fault	1:0495	LinkNet Node 3 RTD 4 Alarm Level 2
1:0455LinkNet Node 3 RTD_8 Fault1:0498LinkNet Node 3 RTD 6 Alarm Level 11:0456LinkNet Node 1 Al 1 Alarm Level 11:0499LinkNet Node 3 RTD 6 Alarm Level 21:0457LinkNet Node 1 Al 1 Alarm Level 21:0500LinkNet Node 3 RTD 7 Alarm Level 11:0458LinkNet Node 1 Al 2 Alarm Level 11:0501LinkNet Node 3 RTD 7 Alarm Level 21:0459LinkNet Node 1 Al 2 Alarm Level 21:0502LinkNet Node 3 RTD 7 Alarm Level 21:0459LinkNet Node 1 Al 2 Alarm Level 21:0502LinkNet Node 3 RTD 8 Alarm Level 11:0460LinkNet Node 1 Al 3 Alarm Level 11:0503LinkNet Node 3 RTD 8 Alarm Level 2	1:0453	LinkNet Node 3 RTD_6 Fault	1:0496	LinkNet Node 3 RTD 5 Alarm Level 1
1:0456LinkNet Node 1 Al 1 Alarm Level 11:0499LinkNet Node 3 RTD 6 Alarm Level 21:0457LinkNet Node 1 Al 1 Alarm Level 21:0500LinkNet Node 3 RTD 7 Alarm Level 11:0458LinkNet Node 1 Al 2 Alarm Level 11:0501LinkNet Node 3 RTD 7 Alarm Level 21:0459LinkNet Node 1 Al 2 Alarm Level 21:0502LinkNet Node 3 RTD 8 Alarm Level 11:0460LinkNet Node 1 Al 3 Alarm Level 11:0503LinkNet Node 3 RTD 8 Alarm Level 2	1:0454	LinkNet Node 3 RTD_7 Fault	1:0497	LinkNet Node 3 RTD 5 Alarm Level 2
1:0457LinkNet Node 1 Al 1 Alarm Level 21:0500LinkNet Node 3 RTD 7 Alarm Level 11:0458LinkNet Node 1 Al 2 Alarm Level 11:0501LinkNet Node 3 RTD 7 Alarm Level 21:0459LinkNet Node 1 Al 2 Alarm Level 21:0502LinkNet Node 3 RTD 8 Alarm Level 11:0460LinkNet Node 1 Al 3 Alarm Level 11:0503LinkNet Node 3 RTD 8 Alarm Level 2	1:0455	LinkNet Node 3 RTD_8 Fault	1:0498	LinkNet Node 3 RTD 6 Alarm Level 1
1:0458LinkNet Node 1 AI 2 Alarm Level 11:0501LinkNet Node 3 RTD 7 Alarm Level 21:0459LinkNet Node 1 AI 2 Alarm Level 21:0502LinkNet Node 3 RTD 8 Alarm Level 11:0460LinkNet Node 1 AI 3 Alarm Level 11:0503LinkNet Node 3 RTD 8 Alarm Level 2	1:0456	LinkNet Node 1 AI 1 Alarm Lev	vel 1 1:0499	LinkNet Node 3 RTD 6 Alarm Level 2
1:0459LinkNet Node 1 AI 2 Alarm Level 21:0502LinkNet Node 3 RTD 8 Alarm Level 11:0460LinkNet Node 1 AI 3 Alarm Level 11:0503LinkNet Node 3 RTD 8 Alarm Level 2	1:0457	LinkNet Node 1 AI 1 Alarm Lev	vel 2 1:0500	LinkNet Node 3 RTD 7 Alarm Level 1
1:0460 LinkNet Node 1 AI 3 Alarm Level 1 1:0503 LinkNet Node 3 RTD 8 Alarm Level 2	1:0458	LinkNet Node 1 AI 2 Alarm Lev	vel 1 1:0501	LinkNet Node 3 RTD 7 Alarm Level 2
	1:0459	LinkNet Node 1 AI 2 Alarm Lev	vel 2 1:0502	LinkNet Node 3 RTD 8 Alarm Level 1
1:0461 LinkNet Node 1 AI 3 Alarm Level 2 1:0504 LinkNet CAN2 Link Error	1:0460	LinkNet Node 1 AI 3 Alarm Lev	vel 1 1:0503	LinkNet Node 3 RTD 8 Alarm Level 2
	1:0461	LinkNet Node 1 AI 3 Alarm Lev	vel 2 1:0504	LinkNet CAN2 Link Error

Manual 3	35018V3 505XT	Dual Redundan	t Control System for Steam Turbines
1:0505	LinkNet Errors on TX/RX msg	1:0548	Secondary Unit is SYSCON
1:0506	LinkNet Errors on RT TX/RX msg	1:0549	Backup Unit Faulted
1:0507	SPARE_90	1:0550	Backup Unit Unavailable
1:0508	Trip - Actuator Scaling Min > Max	1:0551	Backup Contact In 1 Closed
1:0509	Trip - Inlet Input Signal Failed	1:0552	Backup Contact In 2 Closed
1:0510	Trip - Exhaust Input Signal Failed	1:0553	Backup Contact In 3 Closed
1:0511	Trip - External Trip 11	1:0554	Backup Contact In 4 Closed
1:0512	Trip - External Trip 12	1:0555	Backup Contact In 5 Closed
1:0513	Trip - External Trip 13	1:0556	Backup Contact In 6 Closed
1:0514	Trip - External Trip 14	1:0557	Backup Contact In 7 Closed
1:0515	Trip - External Trip 15	1:0558	Backup Contact In 8 Closed
1:0516	Trip - spare_46	1:0559	Backup Contact In 9 Closed
1:0517	Trip - spare_47	1:0560	Backup Contact In 10 Closed
1:0518	Trip - spare_48	1:0561	Backup Contact In 11 Closed
1:0519	Trip - spare_49	1:0562	Backup Contact In 12 Closed
1:0520	Trip - spare_50	1:0563	Backup Contact In 13 Closed
1:0521	Trip - spare_51	1:0564	Backup Contact In 14 Closed
1:0522	Trip - spare_52	1:0565	Backup Contact In 15 Closed
1:0523	Trip - spare_53	1:0566	Backup Contact In 16 Closed
1:0524	Trip - spare_54	1:0567	Backup Contact In 17 Closed
1:0525	Trip - spare_55	1:0568	Backup Contact In 18 Closed
1:0526	Alarm - External alarm # 12	1:0569	Backup Contact In 19 Closed
1:0527	Alarm - External alarm # 13	1:0570	Backup Contact In 20 Closed
1:0528	Alarm - External alarm # 14	1:0571	Backup Relay 1 Energized
1:0529	Alarm - External alarm # 15	1:0572	Backup Relay 2 Energized
1:0530	Alarm - Alternate Mode Map Error	1:0573	Backup Relay 3 Energized
1:0531	Alarm - LP Valve Pos Fdbk Diff ALM	1:0574	Backup Relay 4 Energized
1:0532	Alarm - spare_127	1:0575	Backup Relay 5 Energized
1:0533	Alarm - spare_128	1:0576	Backup Relay 6 Energized
1:0534	Alarm - spare_129	1:0577	Backup Relay 7 Energized
1:0535	Alarm - spare_130	1:0578	Backup Relay 8 Energized
1:0536	Alarm - spare_131	1:0579	SPC 11 is used in system
1:0537	Alarm - spare_132	1:0580	SPC 12 is used in system
1:0538	Alarm - spare_133	1:0581	SPC 13 is used in system
1:0539	Alarm - spare_134	1:0582	SPC 14 is used in system
1:0540	Alarm - spare_135	1:0583	DVP 15 is used in system
1:0541	Alarm - spare_136	1:0584	DVP 16 is used in system
1:0542		0 1:0585	SPC 11 is Faulted
1:0543		0 1:0586	SPC 12 is Faulted
1:0544	**Start of DR added Parameters**	1:0587	SPC 13 is Faulted
1:0545	Primary Unit Healthy	1:0588	SPC 14 is Faulted
1:0546	Primary Unit is SYSCON	1:0589	DVP 15 is Faulted
1:0547	Secondary Unit Healthy	1:0590	DVP 16 is Faulted
	, , ,		

	5018V3 5		t Control System for Steam Turbines
1:0591	Alarm - Backup Unit Unavailable	1:0634	ALM180
1:0592	ALM138	1:0635	ALM181
1:0593	ALM139	1:0636	ALM182
1:0594	ALM140	1:0637	ALM183
1:0595	ALM141	1:0638	ALM184
1:0596	ALM142	1:0639	ALM185
1:0597	ALM143	1:0640	ALM186
1:0598	ALM144	1:0641	ALM187
1:0599	ALM145	1:0642	ALM188
1:0600	ALM146	1:0643	ALM189
1:0601	ALM147	1:0644	ALM190
1:0602	ALM148	1:0645	ALM191
1:0603	ALM149	1:0646	ALM192
1:0604	ALM150	1:0647	ALM193
1:0605	ALM151	1:0648	ALM194
1:0606	ALM152	1:0649	ALM195
1:0607	ALM153	1:0650	ALM196
1:0608	ALM154	1:0651	ALM197
1:0609	ALM155	1:0652	ALM198
1:0610	ALM156	1:0653	ALM199
1:0611	ALM157	1:0654	ALM200
1:0612	ALM158	1:0655	ALM201
1:0613	ALM159	1:0656	ALM202 - spare
1:0614	ALM160	1:0657	ALM203 - spare
1:0615	ALM161	1:0658	ALM204 - spare
1:0616	ALM162	1:0659	ALM205 - spare
1:0617	ALM163	1:0660	ALM206 - spare
1:0618	ALM164	1:0661	ALM207 - spare
1:0619	ALM165	1:0662	ALM208 - spare
1:0620	ALM166	1:0663	ALM209 - spare
1:0621	ALM167	1:0664	ALM210 - spare
1:0622	ALM168	1:0665	ALM211 - spare
1:0623	ALM169	1:0666	ALM212 - spare
1:0624	ALM170	1:0667	ALM213 - spare
1:0625	ALM171	1:0668	ALM214 - spare
1:0626	ALM172	1:0669	ALM215 - spare
1:0627	ALM173	1:0670	ALM216 - spare
1:0628	ALM174	1:0671	ALM217 - spare
1:0629	ALM175	1:0672	ALM218 - spare
1:0630	ALM176	1:0673	ALM219 - spare
1:0631	ALM177	1:0674	ALM220 - spare
1:0632	ALM178	1:0675	ALM221 - spare
	ALM179		

Manual	35018V3
--------	---------

505XT Dual Redundant Control System for Steam Turbines

1:0677 ALM223 - spare

1:0678 ALM224 - spare

Analog Read Addresses

Table 17-10. Analog Read Addresses

Addr	Description	Units	Multiplier	
3:0001	Control Parameter	- 1		
3:0002	Speed Sensor #1 Input (RPM)	rpm 1		
3:0003	Speed Sensor #2 Input (RPM)	rpm 1		
3:0004	Actual Turbine Speed (RPM)	rpm	om 1	
3:0005	Actual Speed (%) x 100	%	100	
3:0006	Speed Setpoint (%) x 100	%	100	
3:0007	Speed Setpoint (RPM)	rpm	1	
3:0008	Speed Droop Setpoint (RPM)	rpm	1	
3:0009	Speed Droop (%) x 100	%	100	
3:0010	Speed PID Output (%)	%	100	
3:0011	Min Governor Speed Setpoint (RPM)	rpm	1	
3:0012	Highest Speed reached	rpm	1	
3:0013	Idle / Rated - Idle Speed (RPM)	rpm	1	
3:0014	Idle / Rated - Rated Speed (RPM)	rpm	1	
3:0015	Auto Seq - Idle 1 Speed Setpt (RPM)	rpm	1	
3:0016	Auto Seq- Idle 1 Dly Time (MIN) X 100	min	100	
3:0017	Auto Seq-Time Left Idle 1 (MIN) X 100	min	100	
3:0018	Auto Seq- Idle1 to Idle2 Rate RPM/SEC	rpm/s	1	
3:0019	Auto Seq - Idle 2 Speed Setpt (RPM)	rpm	1	
3:0020	Auto Seq- Idle 2 Dly Time (MIN) X 100	min	100	
3:0021	Auto Seq-Time Left Idle 2(MIN) X 100	min	100	
3:0022	Auto Seq-Time ramp to Rated (RPM/S)	rpm/s	1	
3:0023	Auto Seq- Rated speed stpt (RPM)	rpm	1	
3:0024	Auto Seq - Run Time Hours	hrs	1	
3:0025	Auto Seq-Hours Since trip	hrs	1	
3:0026	Cascade Setpoint (Scaled)	Casc units	AI_SCALE	
3:0027	Cascade PID Output (%) x 100	%	100	
3:0028	Cascade Input (%)	%	100	
3:0029	Cascade Setpoint (%)	%	100	
3:0030	Cascade Scale Factor	- 1		
3:0031	Cascade Input (Scaled)	Casc units	AI_SCALE	
3:0032	Remote Cascade Input (Scaled)	Casc units	AI_SCALE	
3:0033	Aux Setpoint (Scaled)	aux units	AI_SCALE	
3:0034	Aux PID Output (%) x 100	%	100	
3:0035	Aux Input (%)	%	100	
3:0036	Aux Setpoint (%)	%	100	

Addr	Description	Units	Multiplier
3:0037	Aux Scale Factor	-	1
3:0038	Aux Input (Scaled)	aux units	AI_SCALE
3:0039	Remote Aux Input (Scaled)	aux units	AI_SCALE
3:0040	Remote Speed Setpoint Input	rpm	1
3:0041	Inlet Pressure Scale Factor	-	1
3:0042	Inlet Pressure Input (Scaled)	IP units	AI_SCALE
3:0043	Loadshare Scale Factor	-	1
3:0044	Sync / Loadshare Input (Scaled)	rpm	AI_SCALE
3:0045	KW Scale Factor	-	1
3:0046	KW Input (Scaled)	kW units	AI_SCALE
3:0047	HP VLV Limiter Output x 100	%	100
3:0048	LSS Demand (%) x100	%	100
3:0049	HP Actuator Demand (%) x100	%	100
3:0050	HP2 Actuator Demand (%) x100	%	100
3:0051	Extr/Adm Manual Demand x 100	%	100
3:0052	Extraction Setpoint (Scaled)	ext units	AI_SCALE
3:0053	Extraction PID Output (%) x 100	%	100
3:0054	Extraction Input (%)	%	100
3:0055	Extraction Setpoint (%)	%	100
3:0056	Extraction Scale Factor	-	1
3:0057	Extraction Input (Scaled)	ext units	AI_SCALE
3:0058	Remote Extr Input (Scaled)	ext units	AI_SCALE
3:0059	Spare	-	0
3:0060	Modbus Entered Speed Setpoint (fdbk)	rpm	1
3:0061	Modbus Entered Cascade Setpoint (fdbk)	Casc units	AI_SCALE
3:0062	Modbus Entered Aux Setpoint (fdbk)	Aux units	AI_SCALE
3:0063	Modbus Entered Extr Setpoint (fdbk)	Ext	AI_SCALE
3:0064	S-demand Limited (from ratio/Imtr)	%	100
3:0065	P-demand Limited (from ratio/Imtr)	%	100
3:0066	HP Map Demand (from ratio/Imtr)	%	100
3:0067	LP Map Demand (from ratio/Imtr)	%	100
3:0068	S-term (from LSS to ratio/Imtr)	%	100
3:0069	P-term (from E/A dmd to ratio/Imtr)	%	100
3:0070	Controlling Parameter 1 (505E)	-	0
3:0071	Controlling Parameter 2 (505E)	-	0
3:0072	Analog Input 1 (percent x 100)	%	100
3:0073	Analog Input 2 (percent x 100)	%	100
3:0074	Analog Input 3 (percent x 100)	%	100
3:0075	Analog Input 4 (percent x 100)	%	100
3:0076	Analog Input 5 (percent x 100)	%	100
3:0077	Analog Input 6 (percent x 100)	%	100
3:0078	Analog Output 1 (mA x 100)	mA	100

Addr	Description	Units	Multiplier
3:0079	Analog Output 2 (mA x 100)	mA	100
3:0080	Analog Output 3 (mA x 100)	mA	100
3:0081	Analog Output 4 (mA x 100)	mA	100
3:0082	Analog Output 5 (mA x 100)	mA	100
3:0083	Analog Output 6 (mA x 100)	mA	100
3:0084	Actuator #1 Output (mA x 100)	mA	100
3:0085	Actuator #2 Output (mA x 100)	mA	100
3:0086	Last Trip	-	1
3:0087	KW Units (3=MW 4=KW)	-	1
3:0088	Analog Input 1 Configuration	-	1
3:0089	Analog Input 2 Configuration	-	1
3:0090	Analog Input 3 Configuration	-	1
3:0091	Analog Input 4 Configuration	-	1
3:0092	Analog Input 5 Configuration	-	1
3:0093	Analog Input 6 Configuration	-	1
3:0094	Analog Output 1 Configuration	-	1
3:0095	Analog Output 2 Configuration	-	1
3:0096	Analog Output 3 Configuration	-	1
3:0097	Analog Output 4 Configuration	-	1
3:0098	Analog Output 5 Configuration	-	1
3:0099	Analog Output 6 Configuration	-	1
3:0100	Relay 1 Configuration	-	1
3:0101	Relay 2 Configuration	-	1
3:0102	Relay 3 Configuration	-	1
3:0103	Relay 4 Configuration	-	1
3:0104	Relay 5 Configuration	-	1
3:0105	Relay 6 Configuration	-	1
3:0106	Contact 2 Configuration	-	1
3:0107	Contact 3 Configuration	-	1
3:0108	Contact 4 Configuration	-	1
3:0109	Contact 5 Configuration	-	1
3:0110	Contact 6 Configuration	-	1
3:0111	Contact 7 Configuration	-	1
3:0112	Contact 8 Configuration	-	1
3:0113	Contact 9 Configuration	-	1
3:0114	Contact 10 Configuration	-	1
3:0115	Contact 11 Configuration	-	1
3:0116	Contact 12 Configuration	-	1
3:0117	Contact 13 Configuration	-	1
3:0118	SPARE	-	1
3:0119	SPARE	-	1
3:0120	* Spare E	_	1

Manual 35018V3

Addr	Description	Units	Multiplier
3:0121	* S/W PN54186768	-	1
3:0122	*S/W Revision	-	1
3:0123	* Auto Seq-Time ramp to idle 3(RPM/S)	rpm/s	1
3:0124	* Auto Seq Idle 3 speed RPM	rpm	1
3:0125	* Auto Seq-HH Idle Dly Time (MIN)X 100	min	100
3:0126	* Auto Seq-Time Left Idle 3(MIN) X100	min	100
3:0127	* Max Governor Speed	rpm	1
3:0128	SPARE	-	1
3:0129	SPARE	-	1
3:0130	SPARE	-	1
3:0131	SPARE	-	1
3:0132	SPARE	-	1
3:0133	SPARE	-	1
3:0134	* Feed Forward Bias	-	1
3:0135	SPARE	-	1
3:0136	* Droop Setting	-	100
3:0137	* Autostart seq rate to Idle 1	rpm/s	1
3:0138	* Autostart seq CF Cold rte to Idle 2	rpm/s	1
3:0139	* Autostart seq CF Hot rate to Idle 2	rpm/s	1
3:0140	* Autostart seq CF Cold rte to Idle 3	rpm/s	1
3:0141	* Autostart seq CF Hot rate to Idle 3	rpm/s	1
3:0142	* Autostart seq CF Cold rate to rated	rpm/s	1
3:0143	* Autostart seq CF Hot rate to rated	rpm/s	1
3:0144	Speed Derivative signal	rpm/s	1
3:0145	Speed Accel Rate	%/s	1
3:0146	Analog Input 7 (percent x 100)	%	100
3:0147	Analog Input 8 (percent x 100)	%	100
3:0148	Analog Input 7 Configuration	-	1
3:0149	Analog Input 8 Configuration	-	1
3:0150	Relay 7 Configuration	-	1
3:0151	Relay 8 Configuration	-	1
3:0152	Contact 14 Configuration	-	1
3:0153	Contact 15 Configuration	-	1
3:0154	Contact 16 Configuration	-	1
3:0155	Contact 17 Configuration	-	1
3:0156	Contact 18 Configuration	-	1
3:0157	Contact 19 Configuration	-	1
3:0158	Contact 20 Configuration	-	1
3:0159	Inlet Setpoint (Scaled)	INL units	AI_SCALE
3:0160	Inlet PID Output (%) x 100	%	100
3:0161	Inlet Input (%)	%	100
3:0162	Inlet Setpoint (%)	%	100

Addr	Description	Units	Multiplier
3:0163	Inlet Scale Factor	-	1
3:0164	Inlet Input (Scaled)	INL units	AI_SCALE
3:0165	Remote Inlet Input (Scaled)	INL units	AI_SCALE
3:0166	Modbus Entered Inlet Setpoint (fdbk)	INL units	AI_SCALE
3:0167	SPARE	-	1
3:0168	SPARE	-	1
3:0169	SPARE	-	1
3:0170	SPARE	-	1
3:0171	* Autostart seq CF Warm rte to Idle 2	rpm/s	1
3:0172	* Autostart seq CF Warm rte to Idle 3	rpm/s	1
3:0173	* Autostart seq CF Warm rate to rated	rpm/s	1
3:0174	Idle / Rated Cold Rate	rpm/s	1
3:0175	Idle / Rated Warm Rate	rpm/s	1
3:0176	Idle / Rated Hot Rate	rpm/s	1
3:0177	Remote KW Setpoint Scale Factor	-	1
3:0178	Remote KW Setpoint Input	-	AI_SCALE
3:0179	Spare 179	-	0
3:0180	Spare 180	-	0
3:0181	HP Valve FDBK Position Scale Factor	-	1
3:0182	HP Valve FDBK Position Input	-	AI_SCALE
3:0183	HP2 Valve FDBK Position Scale Factor	-	1
3:0184	HP2 Valve FDBK Position Input	-	AI_SCALE
3:0185	Signal Monitoring #1 Scale Factor	-	1
3:0186	Signal Monitoring #1 Input	-	AI_SCALE
3:0187	Signal Monitoring #2 Scale Factor	-	1
3:0188	Signal Monitoring #2 Input	-	AI_SCALE
3:0189	Signal Monitoring #3 Scale Factor	-	1
3:0190	Signal Monitoring #3 Input	-	AI_SCALE
3:0191	Start Temperature 1 Scale Factor	-	1
3:0192	Start Temperature 1 Input	-	AI_SCALE
3:0193	Start Temperature 2 Scale Factor	-	1
3:0194	Start Temperature 2 Input	-	AI_SCALE
3:0195	Exhaust Setpoint (Scaled)	EXH units	AI_SCALE
3:0196	Exhaust PID Output (%) x 100	%	100
3:0197	Exhaust Input (%)	%	100
3:0198	Exhaust Setpoint (%)	%	100
3:0199	Exhaust Scale Factor	-	1
3:0200	Exhaust Input (Scaled)	EXH units	AI_SCALE
3:0201	Remote Exhaust Input (Scaled)	EXH units	AI_SCALE
3:0202	Modbus Entered Exhaust Setpoint (fdbk)	EXH units	AI_SCALE
3:0203	Exhaust-demand Limited (from ratio/Imtr)	%	100
3:0204	LinkNet Node 1: AI 01 Value	-	AI_SCALE

Addr	Description	Units	Multiplier
3:0205	LinkNet Node 1: AI 02 Value	-	AI_SCALE
3:0206	LinkNet Node 1: AI 03 Value	-	AI_SCALE
3:0207	LinkNet Node 1: AI 04 Value	-	AI_SCALE
3:0208	LinkNet Node 1: AI 05 Value	-	AI_SCALE
3:0209	LinkNet Node 1: AI 06 Value	-	AI_SCALE
3:0210	LinkNet Node 1: AI 07 Value	-	AI_SCALE
3:0211	LinkNet Node 1: AI 08 Value	-	AI_SCALE
3:0212	LinkNet Node 2: AI 01 Value	-	AI_SCALE
3:0213	LinkNet Node 2: AI 02 Value	-	AI_SCALE
3:0214	LinkNet Node 2: AI 03 Value	-	AI_SCALE
3:0215	LinkNet Node 2: AI 04 Value	-	AI_SCALE
3:0216	LinkNet Node 2: AI 05 Value	-	AI_SCALE
3:0217	LinkNet Node 2: AI 06 Value	-	AI_SCALE
3:0218	LinkNet Node 2: AI 07 Value	-	AI_SCALE
3:0219	LinkNet Node 2: AI 08 Value	-	AI_SCALE
3:0220	LinkNet Node 3: RTD 01 Value	-	RTD_SCALE
3:0221	LinkNet Node 3: RTD 02 Value	-	RTD_SCALE
3:0222	LinkNet Node 3: RTD 03 Value	-	RTD_SCALE
3:0223	LinkNet Node 3: RTD 04 Value	-	RTD_SCALE
3:0224	LinkNet Node 3: RTD 05 Value	-	RTD_SCALE
3:0225	LinkNet Node 3: RTD 06 Value	-	RTD_SCALE
3:0226	LinkNet Node 3: RTD 07 Value	-	RTD_SCALE
3:0227	LinkNet Node 3: RTD 08 Value	-	RTD_SCALE
3:0228	Active Speed Setpoint Rate	rpm	1
3:0229	Active Cascade Setpoint Rate	Casc units	1
3:0230	Active AUX Setpoint Rate	aux units	1
3:0231	Active Extraction/Admission Setpoint Rate	ext/adm units	1
3:0232	Active Inlet Setpoint Rate	inlet units	1
3:0233	Active Exhaust Setpoint Rate	EXH units	1
3:0234	505XT Control Parameter	-	1
3:0235	505XT Ratio Limiter Control Parameter	-	1
3:0236	505XT Map Limit Parameter	-	1
3:0237	LP Actuator Demand (%) x100	%	100
3:0238	Turbine Starts Counter	-	1
3:0239	HOT Turbine Starts Counter	-	1
3:0240	Total Trips Counter	-	1
3:0241	Trips with Load >25% Counter	-	1
3:0242	Trips with Load >75% Counter	-	1
3:0243	Total Run Time Hours Counter	hrs	1
3:0244	Run Time Hours with Load >25% Counter	hrs	1
3:0245	Run Time Hours with Load >75% Counter	hrs	1

Manual 35018V3

Addr	Description	Units	Multiplier
3:0246	Peak Speed Reached	rpm	1
3:0247	Maximum Acceleration Reached	rpm	1
3:0248	Number of Overspeed Trips	-	1
3:0249	LP Valve Limiter x100	%	1
3:0250	spare	-	1
3:0251	**Start of DR added Parameters**	-	1
3:0252	Backup Speed Sensor #1 Input (RPM)	RPM	1
3:0253	Backup Speed Sensor #2 Input (RPM)	RPM	1
3:0254	Backup Analog Input 1 (mA x 100)	mA	100
3:0255	Backup Analog Input 2 (mA x 100)	mA	100
3:0256	Backup Analog Input 3 (mA x 100)	mA	100
3:0257	Backup Analog Input 4 (mA x 100)	mA	100
3:0258	Backup Analog Input 5 (mA x 100)	mA	100
3:0259	Backup Analog Input 6 (mA x 100)	mA	100
3:0260	Backup Analog Input 7 (mA x 100)	mA	100
3:0261	Backup Analog Input 8 (mA x 100)	mA	100
3:0262	Backup Analog Output 1 (mA x 100)	mA	100
3:0263	Backup Analog Output 2 (mA x 100)	mA	100
3:0264	Backup Analog Output 3 (mA x 100)	mA	100
3:0265	Backup Analog Output 4 (mA x 100)	mA	100
3:0266	Backup Analog Output 5 (mA x 100)	mA	100
3:0267	Backup Analog Output 6 (mA x 100)	mA	100
3:0268	Backup Actuator #1 Output (mA x 100)	mA	100
3:0269	Backup Actuator #2 Output (mA x 100)	mA	100
3:0270	HP Demand (Single Coil or Redund Act)	%	100
3:0271	HP Coil A Demand	%	100
3:0272	HP Coil B Demand	%	100
3:0273	LP Demand (Single Coil or Redund Act)	%	100
3:0274	LP Coil A Demand	%	100
3:0275	LP Coil B Demand	%	100
3:0276	LP2 Demand	%	100

Analog Write Addresses

Table 17-11. Analog	j write Addresses

Addr	Description	Units	Multiplier
4:0001	Modbus Entered Speed Setpoint	rpm	none
4:0002	Modbus Entered Casc Setpoint	Casc units	Casc scale factor
4:0003	Modbus Entered Aux Setpoint	Aux units	Aux scale factor
4:0004	Modbus Entered Extraction Setpoint	Ext/Adm units	Ext/Adm scale factor
4:0005	Modbus Droop demand	%	x0.01
4:0006	Modbus Entered Inlet Setpoint	Inlet Units	Inlet scale factor
4:0007	Modbus Entered Exhaust Setpoint	Exhaust Units	Exhaust scale factor
4:0008	Spare		
4:0009	Modbus Entered Manual P Setpoint	%	x0.01

Manual 35018V3

505XT Dual Redundant Control System for Steam Turbines

Revision History

New Volume—

We appreciate your comments about the content of our publications. Send comments to: <u>icinfo@woodward.com</u>

Please reference publication 35018V3.

PO Box 1519, Fort Collins CO 80522-1519, USA 1041 Woodward Way, Fort Collins CO 80524, USA Phone +1 (970) 482-5811

Email and Website—www.woodward.com

Woodward has company-owned plants, subsidiaries, and branches, as well as authorized distributors and other authorized service and sales facilities throughout the world.

Complete address / phone / fax / email information for all locations is available on our website.